• 제목/요약/키워드: East Asia regional forecast

검색결과 7건 처리시간 0.018초

수반 모델에 기반한 관측영향 진단법을 이용하여 동아시아 지역의 단기예보에 AMSU-A 자료 동화가 미치는 영향 분석 (Adjoint-Based Observation Impact of Advanced Microwave Sounding Unit-A (AMSU-A) on the Short-Range Forecast in East Asia)

  • 김성민;김현미
    • 대기
    • /
    • 제27권1호
    • /
    • pp.93-104
    • /
    • 2017
  • The effect of Advanced Microwave Sounding Unit-A (AMSU-A) observations on the short-range forecast in East Asia (EA) was investigated for the Northern Hemispheric (NH) summer and winter months, using the Forecast Sensitivity to Observations (FSO) method. For both periods, the contribution of radiosonde (TEMP) to the EA forecast was largest, followed by AIRCRAFT, AMSU-A, Infrared Atmospheric Sounding Interferometer (IASI), and the atmospheric motion vector of Communication, Ocean and Meteorological Satellite (COMS) or Multi-functional Transport Satellite (MTSAT). The contribution of AMSU-A sensor was largely originated from the NOAA 19, NOAA 18, and MetOp-A (NOAA 19 and 18) satellites in the NH summer (winter). The contribution of AMSU-A sensor on the MetOp-A (NOAA 18 and 19) satellites was large at 00 and 12 UTC (06 and 18 UTC) analysis times, which was associated with the scanning track of four satellites. The MetOp-A provided the radiance data over the Korea Peninsula in the morning (08:00~11:30 LST), which was important to the morning forecast. In the NH summer, the channel 5 observations on MetOp-A, NOAA 18, 19 along the seaside (along the ridge of the subtropical high) increased (decreased) the forecast error slightly (largely). In the NH winter, the channel 8 observations on NOAA 18 (NOAA 15 and MetOp-A) over the Eastern China (Tibetan Plateau) decreased (increased) the forecast error. The FSO provides useful information on the effect of each AMSU-A sensor on the EA forecasts, which leads guidance to better use of AMSU-A observations for EA regional numerical weather prediction.

WRF 모형의 적운 모수화 방안이 CORDEX 동아시아 2단계 지역의 기후 모의에 미치는 영향 (Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model)

  • 최연우;안중배
    • 대기
    • /
    • 제27권1호
    • /
    • pp.105-118
    • /
    • 2017
  • This study assesses the performance of the Weather Research and Forecasting (WRF) model in reproducing regional climate over CORDEX-East Asia Phase 2 domain with different cumulus parameterization schemes [Kain-Fritch (KF), Betts-Miller-Janjic (BM), and Grell-Devenyi-Ensemble (GD)]. The model is integrated for 27 months from January 1979 to March 1981 and the initial and boundary conditions are derived from European Centre for Medium-Range Weather Forecast Interim Reanalysis (ERA-Interim). The WRF model reasonably reproduces the temperature and precipitation characteristics over East Asia, but the regional scale responses are very sensitive to cumulus parameterization schemes. In terms of mean bias, WRF model with BM scheme shows the best performance in terms of summer/winter mean precipitation as well as summer mean temperature throughout the North East Asia. In contrast, the seasonal mean precipitation is generally overestimated (underestimated) by KF (GD) scheme. In addition, the seasonal variation of the temperature and precipitation is well simulated by WRF model, but with an overestimation in summer precipitation derived from KF experiment and with an underestimation in wet season precipitation from BM and GD schemes. Also, the frequency distribution of daily precipitation derived from KF and BM experiments (GD experiment) is well reproduced, except for the overestimation (underestimation) in the intensity range above (less) then $2.5mm\;d^{-1}$. In the case of the amount of daily precipitation, all experiments tend to underestimate (overestimate) the amount of daily precipitation in the low-intensity range < $4mm\;d^{-1}$ (high-intensity range > $12mm\;d^{-1}$). This type of error is largest in the KF experiment.

CORDEX-동아시아 2단계 영역 재현실험을 통한 WRF 강수 모의성능 평가 (Evaluation of Reproduced Precipitation by WRF in the Region of CORDEX-East Asia Phase 2)

  • 안중배;최연우;조세라
    • 대기
    • /
    • 제28권1호
    • /
    • pp.85-97
    • /
    • 2018
  • This study evaluates the performance of the Weather Research and Forecasting (WRF) model in reproducing the present-day (1981~2005) precipitation over Far East Asia and South Korea. The WRF model is configured with 25-km horizontal resolution within the context of the COordinated Regional climate Downscaling Experiment (CORDEX) - East Asia Phase 2. The initial and lateral boundary forcing for the WRF simulation are derived from European Centre for Medium-Range Weather Forecast Interim reanalysis. According to our results, WRF model shows a reasonable performance to reproduce the features of precipitation, such as seasonal climatology, annual and inter-annual variabilities, seasonal march of monsoon rainfall and extreme precipitation. In spite of such model's ability to simulate major features of precipitation, systematic biases are found in the downscaled simulation in some sub-regions and seasons. In particular, the WRF model systematically tends to overestimate (underestimate) precipitation over Far East Asia (South Korea), and relatively large biases are evident during the summer season. In terms of inter-annual variability, WRF shows an overall smaller (larger) standard deviation in the Far East Asia (South Korea) compared to observation. In addition, WRF overestimates the frequency and amount of weak precipitation, but underestimates those of heavy precipitation. Also, the number of wet days, the precipitation intensity above the 95 percentile, and consecutive wet days (consecutive dry days) are overestimated (underestimated) over eastern (western) part of South Korea. The results of this study can be used as reference data when providing information about projections of fine-scale climate change over East Asia.

지역기후모델을 이용한 상세계절예측시스템 구축 및 겨울철 예측성 검증 (Construction of the Regional Prediction System using a Regional Climate Model and Validation of its Wintertime Forecast)

  • 김문현;강현석;변영화;박수희;권원태
    • 대기
    • /
    • 제21권1호
    • /
    • pp.17-33
    • /
    • 2011
  • A dynamical downscaling system for seasonal forecast has been constructed based on a regional climate model, and its predictability was investigated for 10 years' wintertime (December-January-February; DJF) climatology in East Asia. Initial and lateral boundary conditions were obtained from the operational seasonal forecasting data, which are realtime output of the Global Data Assimilation and Prediction System (GDAPS) at Korea Meteorological Administration (KMA). Sea surface temperature was also obtained from the operational forecasts, i.e., KMA El-Nino and Global Sea Surface Temperature Forecast System. In order to determine the better configuration of the regional climate model for East Asian regions, two sensitivity experiments were carried out for one winter season (97/98 DJF): One is for the topography blending and the other is for the cumulus parameterization scheme. After determining the proper configuration, the predictability of the regional forecasting system was validated with respect to 850 hPa temperature and precipitation. The results showed that mean fields error and other verification statistics were generally decreased compared to GDAPS, most evident in 500 hPa geopotential heights. These improved simulation affected season prediction, and then HSS was better 36% and 11% about 850 hPa temperature and precipitation, respectively.

기상청 전지구 수치예보모델을 이용한 전지구 한국형 항공난류 예측시스템(G-KTG) 개발 (Development of the Global-Korean Aviation Turbulence Guidance (Global-KTG) System Using the Global Data Assimilation and Prediction System (GDAPS) of the Korea Meteorological Administration (KMA))

  • 이단비;전혜영
    • 대기
    • /
    • 제28권2호
    • /
    • pp.223-232
    • /
    • 2018
  • The Global-Korean aviation Turbulence Guidance (G-KTG) system is developed using the operational Global Data Assimilation and Prediction System of Korea Meteorological Administration with 17-km horizontal grid spacing. The G-KTG system provides an integrated solution of various clear-air turbulence (CAT) diagnostics and mountain-wave induced turbulence (MWT) diagnostics for low [below 10 kft (3.05 km)], middle [10 kft (3.05 km) - 20 kft (6.10 km)], and upper [20 kft (6.10 km) - 50 kft (15.24 km)] levels. Individual CAT and MWT diagnostics in the G-KTG are converted to a 1/3 power of energy dissipation rate (EDR). 12-h forecast of the G-KTG is evaluated using 6-month period (2016.06~2016.11) of in-situ EDR observation data. The forecast skill is calculated by area under curve (AUC) where the curve is drawn by pairs of probabilities of detection of "yes" for moderate-or-greater-level turbulence events and "no" for null-level turbulence events. The AUCs of G-KTG for the upper, middle, and lower levels are 0.79, 0.69, and 0.63, respectively. Comparison of the upper-level G-KTG with the regional-KTG in East Asia reveals that the forecast skill of the G-KTG (AUC = 0.77) is similar to that of the regional-KTG (AUC = 0.79) using the Regional Data Assimilation and Prediction System with 12-km horizontal grid spacing.

지역 기후 모형을 이용한 한반도 강수 모의에서 수평 해상도의 영향 (Impact of Horizontal Resolution of Regional Climate Model on Precipitation Simulation over the Korean Peninsula)

  • 이영호;차동현;이동규
    • 대기
    • /
    • 제18권4호
    • /
    • pp.387-395
    • /
    • 2008
  • The impact of horizontal resolution on a regional climate model was investigated by simulating precipitation over the Korean Peninsula. As a regional climate model, the SNURCM(Seoul National University Regional Climate Model) has 21 sigma layers and includes the NCAR CLM(National Center for Atmospheric Research Community Land Model) for land-surface model, the Grell scheme for cumulus convection, the Simple Ice scheme for explicit moisture, and the MRF(Medium-Range Forecast) scheme for PBL(Planetary Boundary Layer) processing. The SNURCM was performed with 20 km resolution for Korea and 60 km resolution for East Asia during a 20-year period (1980-1999). Although the SNURCM systematically underestimated precipitation over the Korean Peninsula, the increase of model resolution simulated more precipitation in the southern region of the Korean Peninsula, and a more accurate distribution of precipitation by reflecting the effect of topography. The increase of precipitation was produced by more detailed terrain data which has a 10 minute terrain in the 20 km resolution model compared to the 30 minute terrain in the 60 km resolution model. The increase in model resolution and more detailed terrain data played an important role in generating more precipitation over the Korean Peninsula. While the high resolution model with the same terrain data resulted in increasing of precipitation over the Korean Peninsula including the adjoining sea, the difference of the terrain data resolution only influenced the precipitation distribution of the mountainous area by increasing the amount of non-convective rain. In conclusion, the regional climate model (SNURCM) with higher resolution simulated more precipitation over the Korean Peninsula by reducing the systematic underestimation of precipitation over the Korean Peninsula.

Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측 (Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach)

  • 김태근;양두하;조영호;송교홍;오장근
    • 생태와환경
    • /
    • 제49권3호
    • /
    • pp.197-207
    • /
    • 2016
  • 본 연구는 국립공원을 포함한 국내 보호지역에서 반달가슴곰 (Ursus thibetanus)을 효과적으로 보전하고, 종 복원을 성공하기 위해서 종의 재도입에 적합한 지역을 객관적으로 평가하기 위한 기초자료를 제공하는 데 그 목적이 있다. 이를 위해서 Maxent 모델과 기후, 지형, 그리고 도로 및 토지이용과 관련된 환경 변수를 이용하여 반달가슴곰의 출현 기록이 있는 동아시아, 동남아시아, 그리고 인도를 대상으로 잠재 서식지를 예측하고, 이와 관련된 기후 및 환경 변수의 영향을 평가하였다. 또한 미래 기후변화에 따라서 반달가슴곰에게 적합한 서식 범위의 면적과 지리적인 변화를 분석하였다. 생물보전을 위해서 야생생물의 서식지분포연구에 널리 활용되고 있는 Maxent 모델의 판별정확도를 나타내는 AUC 값이 0.893 (sd=0.121)으로 산출되었다. 이는 반달가슴곰의 잠재 서식지를 예측하고 미래 기후변화에 따른 서식지 변화특성을 평가하는 데 유용하였다. IUCN에서 평가한 반달가슴곰의 분포지도와 비교해서, 현존 지역 (Extant)은 Maxent 모델로 예측된 서식 확률이 국가별 지역적으로 다양하고, 멸종 지역 (Extinct)은 상대적으로 낮았다. 이는 반달가슴곰이 서식하는 환경 특성의 차이가 지역적으로 반영된 결과라 할 수 있다. 반달가슴곰의 잠재 서식지 분포에 영향을 주는 환경은 기후, 지형 그리고 인위적 요소인 도로로부터의 거리와 같은 요소보다 토지피복 유형의 영향이 가장 높았는데, 특히 낙엽활엽수림지역이 더욱 선호될 것으로 예측되었다. 또한 기온의 연간범위보다 연평균강수량과 건조시기의 강수량의 영향이 더욱 클 것으로 예측되었고 도로로부터 거리가 멀어질수록 서식가능성이 높은 것으로 나타났다. 이는 반달가슴곰은 먹이자원뿐만 아니라 인간의 간섭이 없는 보다 안정된 지역을 선호할 것으로 추측된다. 미래 기후변화에 따라서 서식적합지역은 점차 확장할 것으로 전망되었고, 남한에서는 전남, 전북 그리고 강원도지역이, 일본에서는 Kyushu, Chugoku, Shikoku, Chubu, Kanto 그리고 Tohoku의 접경 지역이, 중국에서는 Jiangxi, Zhejiang 그리고 Fujian의 접경 지역이 향후 아시아지역에서 반달가슴곰이 서식할 수 있는 핵심지역이 될 것으로 예상된다. 본 연구는 반달가슴곰의 서식지 보전과 효율적인 관리, 인위적으로 도입된 개체의 방사지점 선정, 향후 서식 범위의 확장에 따른 보호지역 설정 그리고 인간과 충돌지역의 관리에 대한 기초자료로서 활용될 것으로 기대된다.