• Title/Summary/Keyword: Earthquake safety

Search Result 899, Processing Time 0.028 seconds

Rail-Stress of High-Speed Railway Bridges using tong Rails and subjected to Spatial Variation of Ground Motion Excitations (지반운동을 공간변화를 고려한 고속철도 장대레일의 응력해석)

  • Ki-Jun Kwon;Yong-Gil Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.132-138
    • /
    • 2003
  • The use of long rails in high-speed railway bridges causes additional stresses due to nonlinear behaviours between the rail and bridge decks in the neighbourhood of the deck joints. In the seismic response analysis of high-speed railway bridges, since structural response is highly sensitive to properties of the ground motion, spatial variation of the ground excitation affects responses of the bridges, which in turn affect stresses in the rails. In addition, it is shown that high-speed trains need very long distances to stop when braking under seismic occurrence corresponding to operational earthquake performance level so that verification of the safe stoppage of the train is also required. In view of such additional stresses due to long rails, sensibility of structural response to the properties of the ground motion and braking distance needed by the train to stop safely, this paper proposes and establishes a time domain nonlinear dynamic analysis method that accounts for braking loads, spatial variation of the ground motion and material nonlinearities of rails to analyze long rail stresses in high-speed railway bridges subjected to seismic event. The accuracy of the proposed method is demonstrated through an application on a typical site of the Korean high-speed railway.

Accumulation of Natural and Artificial Radionuclides in Marine Products around the Korean Peninsula: Current Studies and Future Direction (국내산 수산물 내 자연 및 인공방사능 축적 연구 현황 및 향후 연구 방향)

  • Lee, Huisu;Kim, Intae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.618-629
    • /
    • 2021
  • The Fukushima nuclear power plant (NPP) accident caused by the East Japan Earthquake in 2011 and the recent increase in the frequency of earthquakes in Korea have caused safety concerns regarding radionuclide exposure. In addition, the Tokyo Electric Power Company (TEPCO) in Japan recently decided to release radionuclide-contaminated water from Fukushima's NPP into the Pacific Ocean, raising public concerns that the possibility of radionuclide contamination through both domestic- and foreign fishery products is increasing. Although many studies have been conducted on the input of artificial radionuclides into the Pacific after the Fukushima NPP accident, studies on the distribution and accumulation of artificial radionuclides in marine products from East Asia are lacking. Therefore, in this study, we attempted to explore recent research on the distribution of artificial radionuclides (e.g., 137Cs, 239+240Pu, 90Sr, and etc.) in marine products from Korean seas after the Fukushima NPP accident. In addition, we also discuss future research directions as it is necessary to prepare for likely radiation accidents in the future around Korea associated with the new nuclear facilities planned by 2030 in China and owing to the discharge of radionuclide-contaminated water from the Fukushima NPP.

Seismic Margin Assessment of Concrete Retaining Walls (콘크리트 옹벽의 지진여유도 평가)

  • Park, Duhee;Baeg, Jongmin;Park, Inn-Joon;Hwang, Kyeungmin;Jang, Jungbum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.7
    • /
    • pp.5-10
    • /
    • 2019
  • In recent Gyeongju and Pohang earthquakes, motions that exceed the design ground motion were recorded. This has led to adjustments to the design earthquake intensity in selected design guidelines. An increment in the design intensity requires reevaluation of all associated facilities, requiring extensive time and cost. Firstly, the seismic factor of safety of built concrete retaining walls are calculated. Secondly, the seismic margin of concrete retaining walls is evaluated. The design sections of concrete walls built at power plants and available site investigation reports are utilized. Widely used pseudo-static analysis method is used to evaluate the seismic performance. It is shown that all concrete walls are safe against the adjusted design ground motion. To determine the seismic margin of concrete walls, the critical accelerations, which is defined as the acceleration that causes the seismic factor of safety to exceed the allowable value, are calculated. The critical acceleration is calculated as 0.36g~0.8g. The limit accelerations are significantly higher than the design intensity and are demonstrated to have sufficient seismic margin. Therefore, it is concluded that the concrete retaining walls do not need to be reevaluated even if the design demand is increased up to 0.3g.

A Study on the Seismic Performance Improvement of Mid and Low-Rise RC Grid Structures Using Steel Slab Hysteretic Damper (강재 슬래브 이력형 댐퍼(SSHD)를 이용한 중·저층 RC 격자 구조물의 내진성능 향상에 관한 연구)

  • Kim, Dong Baek;Lee, In Duk;Choi, Jung Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.418-426
    • /
    • 2019
  • Purpose: After analyzing the seismic capability of low-rise RC grid structures with insufficient seismic performance, the purpose of the project is to install steel slab hysteretic dampers (SSHD) to improve the seismic performance of beams and columns, and to suggest measures to minimize damage to the structure and human damage when an earthquake occurs. Method: The evaluation of the seismic performance of a structure is reviewed based on the assumption that the seismic performance is identified for the grid-type subway systems that are not designed to be seismic resistant and the installation of an SSHD system, a method that minimizes construction period, if insufficient, is required. Result: After the application and reinforce of structure with SSHD, and the results of eigenvalue analysis are as follows. The natural periodicity of longitudinal direction was 0.55s and that of vertical direction was 0.58s. Conclusion: As results of cyclic load test of structure with SSHD, the shear rigidity of damper is 101%, the energy dissipation rate is 108% and, plastic rotation angle of all column and beam is satisfied for $I_o$ level and therefore it is judged that the reinforce effect is sufficient.

Use of a Genetic Algorithm to Predict the Stiffness Reductions and Retrofitting Effects on Structures Subjected to Seismic Loads (지진하중을 받은 구조물의 유전알고리즘 기반 강성저하 및 보강 효과 추정)

  • Lee, Jae-Hun;Ahn, Kwang-Sik;Lee, Sang-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2020
  • This study examines a method for identifying stiffness reductions in structures subjected to seismic loads and retrofitting effects using a combination of the finite element method and an advanced genetic algorithm. The novelty of this study is the application of seismic loading and its response to anomalies in the tested structure. The technique described in this study may enable not only detection of damaged elements but also the identification of their locations and the extent of damage due to seismic loading. To demonstrate the feasibility of the method, the advanced genetic algorithm is applied to frame and truss bridge structures subjected to El Centro and Pohang seismic loads. The results reveal the excellent computational efficiency of the method and its ability to prevent severe damage from earthquakes.

Seismic damage assessment of steel reinforced recycled concrete column-steel beam composite frame joints

  • Dong, Jing;Ma, Hui;Zhang, Nina;Liu, Yunhe;Mao, Zhaowei
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Low cyclic loading tests are conducted on the steel reinforced recycled concrete (SRRC) column-steel (S) beam composite frame joints. This research aims to evaluate the earthquake damage performance of composite frame joints by performing cyclic loading tests on eight specimens. The experimental failure process and failure modes, load-displacement hysteresis curves, characteristic loads and displacements, and ductility of the composite frame joints are presented and analyzed, which shows that the composite frame joints demonstrate good seismic performance. On the basis of this finding, seismic damage performance is examined by using the maximum displacement, energy absorbed in the hysteresis loops and Park-Ang model. However, the result of this analysis is inconsistent with the test failure process. Therefore, this paper proposes a modified Park-Ang seismic damage model that is based on maximum deformation and cumulative energy dissipation, and corrected by combination coefficient ${\alpha}$. Meanwhile, the effects of recycled coarse aggregate (RCA) replacement percentage and axial compression ratio on the seismic damage performance are analyzed comprehensively. Moreover, lateral displacement angle is used as the quantification index of the seismic performance level of joints. Considering the experimental study, the seismic performance level of composite frame joints is divided into five classes of normal use, temporary use, repair after use, life safety and collapse prevention. On this basis, the corresponding relationships among seismic damage degrees, seismic performance level and quantitative index are also established in this paper. The conclusions can provide a reference for the seismic performance design of composite frame joints.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

Estimation of Reinforcement Effect of Superannuated Fill Dam Repaired by the Permeable Grouting Method (침투그라우팅이 시공된 노후필댐의 보수보강효과 평가)

  • Kim, Yungjin;Heo, Yol;Oh, Byunghyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.45-52
    • /
    • 2007
  • Maintenance of structural and hydrological safety of the superannuated fill dam is very important subject on the viewpoint of disaster prevention. Mainly, the core of the superannuated fill dams have been damaged continuously by the various harmful external forces such as the typhoons, flash floods and earthquake, and these can be connected to the large scaled general dam failure. Therefore, the research on the repair, remediation and reinforcement of dam is necessary. In this study, the permeable grouting method for the remediation of fill dam was examined by the electrical resistivity survey and the change of permeability of core front. As a result, the permeable grouting method can be useful remediation method for the superannuated fill dam, the leakage from the core front decreased greatly before and after the construction of grouting. Furthermore, it can be said that the turbidity of fill dam may not be greatly increased by grouting.

  • PDF

Analysis of extended end plate connection equipped with SMA bolts using component method

  • Toghroli, Ali;Nasirianfar, Mohammad Sadegh;Shariati, Ali;Khorami, Majid;Paknahad, Masoud;Ahmadi, Masoud;Gharehaghaj, Behnam;Zandi, Yousef
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.213-228
    • /
    • 2020
  • Shape Memory Alloys (SMAs) are new materials used in various fields of science and engineering, one of which is civil engineering. Owing to their distinguished capabilities such as super elasticity, energy dissipation, and tolerating cyclic deformations, these materials have been of interest to engineers. On the other hand, the connections of a steel structure are of paramount importance because of their vulnerabilities during an earthquake. Therefore, it is indispensable to find approaches to augment the efficiency and safety of the connection. This research investigates the behavior of steel connections with extended end plates equipped hybridly with 8 rows of high strength bolts as well as Nitinol superelastic SMA bolts. The connections are studied using component method in dual form. In this method, the components affecting the connections behavior, such as beam flange, beam web, column web, extended end plate, and bolts are considered as parallel and series springs according to the Euro-Code3. Then, the nonlinear force- displacement response of the connection is presented in the form of moment-rotation curve. The results obtained from this survey demonstrate that the connection has ductility, in addition to its high strength, due to high ductility of SMA bolts.

A study about determination of preliminary design & minimum reinforcement ratios

  • KOC, Varol;EMIROGLU, Yusuf
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.673-692
    • /
    • 2016
  • In the standards, minimum reinforcement ratios are presented as the least reinforcement ratios that bearing elements should have in a way to include all systems and in general. However, naturally these general minimum ratios might be presented as being lower than the normally required reinforcement ratios by criteria such as system size, bearing system arrangement, section situation and distributions of the elements and earthquake effect. In this case, minimum reinforcement ratios may remain as meaningless restrictions. Then grouping the criterion that might affect reinforcement ratios according to certain parameters and creating minimum reinforcement ratios regarding preliminary design will provide ease and safety during the project designing. Moreover, it will enable fast and simple examinations in the beginning of project control and evaluation process. By means of the data which could be defined as "preliminary design & minimum reinforcement ratios", a more realistic and safe restriction compared to general minimum reinforcement ratios could be presented. As a result of numerous comprehensive studies, reinforcement ratios to include all certain systems might be obtained. Today, thanks to the development level of finite elements programs which can make reinforced concrete modelling, with the studies that are impossible to carry out beforehand, this deficiency in the minimum reinforcement ratios in the standarts may at least be partially made up with the advisory regulation of preliminary design & minimum reinforcement ratios. As the structure of the system to be examined and the diversity of the parameters range from the specific to the general, preliminary design & minimum reinforcement ratios will approximate to general minimum reinforcement ratios in real terms. By focusing on a more specific system structure and diversity of the parameters, preliminary design and even design reinforcement ratios will be approximated. In this preliminary study, a route between these two extremes was attempted to be followed. Today, it is possible to determine suggested practical ratios for project designs through carrying out numerous studies.