• Title/Summary/Keyword: Earthquake safety

Search Result 899, Processing Time 0.03 seconds

Development of Dam Earthquake Monioring System and Application of Earthquake Records for Dam Safety Management against Earthquake (지진대비 댐안전관리를 위한 지진감시시스템 구축 및 계측기록 활용)

  • Ha, Ik-Soo;Lee, Jong-Wook;Cho, Sung-Eun;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1389-1396
    • /
    • 2008
  • The recent Sichuan earthquake(2008) in China and Iwate-Miyazaki earthquake(2008) in Japan give Korea peninsula warning that it is no more safety zone against damage by earthquake events. So, rapid and appropriate countermeasures for dam operation and management against earthquake are needed. In Korea earthquake design standard(MOCT, 1997) has been revised after Kobe earthquake. Installation of seismometer and monitoring of earthquake for special class dams is requlated in dam aseismic design standard(MOCT, 2001). Accelerometer installation project for existing dams has been carrying out by K-water to establish an earthquake network for dam safety. Real-time dam earthquake monitoring network has also been developed to detect an earthquake efficiently and to warn to dam administrators as soon as possible. In this study, dam real-time earthquake monitoring system developed by K-water was introduced and applicability of real earthquake record measured by this system to dam safety management was illustrated.

  • PDF

Incorporation of collapse safety margin into direct earthquake loss estimate

  • Xian, Lina;He, Zheng;Ou, Xiaoying
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.429-450
    • /
    • 2016
  • An attempt has been made to incorporate the concept of collapse safety margin into the procedures proposed in the performance-based earthquake engineering (PBEE) framework for direct earthquake loss estimation, in which the collapse probability curve obtained from incremental dynamic analysis (IDA) is mathematically characterized with the S-type fitting model. The regressive collapse probability curve is then used to identify non-collapse cases and collapse cases. With the assumed lognormal probability distribution for non-collapse damage indexes, the expected direct earthquake loss ratio is calculated from the weighted average over several damage states for non-collapse cases. Collapse safety margin is shown to be strongly related with sustained damage endurance of structures. Such endurance exhibits a strong link with expected direct earthquake loss. The results from the case study on three concrete frames indicate that increase in cross section cannot always achieve a more desirable output of collapse safety margin and less direct earthquake loss. It is a more effective way to acquire wider collapse safety margin and less direct earthquake loss through proper enhancement of reinforcement in structural components. Interestingly, total expected direct earthquake loss ratio seems to be insensitive a change in cross section. It has demonstrated a consistent correlation with collapse safety margin. The results also indicates that, if direct economic loss is seriously concerned, it is of much significance to reduce the probability of occurrence of moderate and even severe damage, as well as the probability of structural collapse.

Review and Proposal for Seismic Safety Assessment of Nuclear Power Plants against Beyond Design Basis Earthquake (설계초과 지진에 대한 원전 지진안전성 평가기술 고찰 및 제언)

  • Choi, In-Kil
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • After Kyeongju earthquake occurred in September 12, 2016, the seismic safety of nuclear power plants became important issue in our country. The seismic safety of nuclear power plant against beyond design basis earthquake became very important to secure the public safety. In this paper, the current status of the seismic safety assessment methodology is reviewed and some aspects for the reliability improvement of the seismic safety assessment results are proposed. Seismic margin analysis and probabilistic seismic safety assessment have been used for the seismic safety evaluation of a nuclear power pant. The basic procedure and the related issues and proposals for the probabilistic seismic safety assessment are investigated.

Reliability Assessment of Long-Period Cable-Stayed Bridges on Near Fault Earthquake(NFE) (근거리지진에서 장주기사장교의 신뢰성평가)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.44-48
    • /
    • 2012
  • The seismic safety of long-period cable-stayed bridges is assessed by probabilistic finite element analysis and reliability analysis under NFE. The structural response of critical members of cable-stayed bridges is evaluated using the developed probabilistic analysis algorithm. In this study, the real earthquake recording(Chi-Chi Earthquake; 1997) was selected as the input NFE earthquake for investigating response characteristics. The probabilistic response and reliability index shows the different aspect comparing the result from FFE earthquake. Therefore, the probabilistic seismic safety assessment on NFE earthquakes should be performed for the exact evaluation of long-period cable-stayed bridges and the earthquake resistant design criteria should be complemented.

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Rapid Structural Safety Evaluation Method of Buildings using Unmanned Aerial Vehicle (SMART SKY EYE) (무인비행체를 이용한 건축물의 긴급 위험도 평가 기술 (SMART SKY EYE) 개발)

  • Jeong, Dong-Min;Lee, Jong-Hoon;Lee, Da-Hye;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.3-11
    • /
    • 2019
  • The recent earthquake of Pohang (M5.4) and the Gyeongju earthquake (M5.8) suggested the possibility of a strong earthquake in Korea and reminded us that the Korea is no longer an earthquake-safe zone. In the disaster recovery stage in a disaster like an earthquake, the investigation of the damage situation and the safety assessment of the building serve to provide important information for the initial action such as establishment of the recovery strategy and rescue of the survivor. However, the research that depends on manpower can not cope with the difficulty of processing a large number of doses in a short time, and the expertise of the manpower must be taken into consideration, which may result in delayed initial action. In this study, we propose an rapid safety evaluation technique of building using unmanned aerial vehicle which evaluates the performance and safety of buildings by integrating conventional safety inspection method with unmanned aerial vehicle technology and developed evaluation method of each evaluation factor. In order to verify this, the buildings damaged by the earthquake in Pohang were checked and compared using this system. The results are consistent with the results of the existing emergency earthquake risk assessment. As a result, the possibility of checking the emergency safety using the unmanned aerial vehicle for the damaged structures in case of a large-scale disaster such as an earthquake was confirmed.

A Study on the Establishment of Earthquake Safety Guidance Model for Disaster Prevention Policy in Korea (지진방재정책결정 지원을 위한 건물 안전지도 구축 모형 연구)

  • Park, Hyoung-Rae;Ahn, Jeong-Keun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.251-265
    • /
    • 2017
  • On the Korean peninsula, which has been recognized as a safe haven from earthquakes, A magnitude 5.8 earthquake occurred. It has been confirmed that the Korean Peninsula is no longer a safe zone from an earthquake. The purpose of this study is to examine the state of the earthquake preparedness in our society and to grasp the properties of the building which is a direct damage object in the event of an earthquake and to help the decision making of the earthquake disaster prevention policy through the construction of the earthquake safety map. There is a purpose. Earthquake safety maps are created through spatial analysis using GIS tools. The construction of an earthquake safety map is not the whole of the earthquake disaster prevention policy, but it means that it is a starting point to effectively replace the earthquake disaster prevention system.

In-structure Response Evaluation of Shear Wall Structure via Shaking Table Tests (진동대 실험을 통한 전단벽 구조물의 층응답 특성 평가)

  • Jung, Jae-Wook;Ha, Jeong-Gon;Hahm, Daegi;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • After the manual shutdown of the Wolseong nuclear power plant due to an earthquake in Gyeongju in 2016, anxiety about the earthquake safety of nuclear power plants has become a major social issue. The shear wall structure used as a major structural element in nuclear power plants is widely used as a major structural member because of its high resistance to horizontal loads such as earthquakes. However, due to the complexity of the structure, it is challenging to predict the dynamic characteristics of the structure. In this study, a three-story shear wall structure is fabricated, and the in-structure response characteristics of the shear wall structure are evaluated through shaking table tests. The test is performed using the Gyeongju earthquake that occurred in 2016, and the response characteristics due to the domestic earthquake are evaluated.

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

Study on Establishing Earthquake-resistance Reinforcement Measures for Earthquake Disasters in National Industrial Complexes (국가산업단지의 지진재난 내진보강대책 수립 연구)

  • Chang Young Song
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.882-896
    • /
    • 2023
  • Pupose: The purpose is to prepare safety management and seismic reinforcement measures that can effectively improve the potential risks of earthquake-resistant design and the deficiencies of safety guidance and inspection of factory facilities in national industrial complexes. Method: In this study, problems and improvement measures were derived through investigation and analysis of overall earthquake disaster safety management, such as safety management status and management system in preparation for earthquake disasters in national industrial complexes. was implemented to suggest improvement plans based on facility types and structural characteristics. Result: In conclusion, the problems of safety management and seismic reinforcement in preparation for earthquake disasters in national industrial complexes were summarized and classified into four types (seismic performance evaluation and related system supplementation, authority of tenant companies and local governments, seismic reinforcement and safety management support measures, organizational structure capacity building) to derive improvement measures. Conclusion: Based on this, seismic reinforcement measures that companies in national industrial complexes should implement in preparation for earthquake disasters were prepared, and detailed plans for each measure were presented.