• Title/Summary/Keyword: Earthquake mechanism

Search Result 268, Processing Time 0.021 seconds

Structure's base design for earthquake protection numerical and experimental study

  • Alsaif, K.;Kaplan, H.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.101-114
    • /
    • 2003
  • A base isolation system is proposed for earthquake protection of structures. The system incorporates spherical supports for the base, a specially designed spring-cam system to keep the base rigidly supported under normal condition and to allow it to move for the duration of the earthquake under the constraint of a spring with optimized non-linear characteristics. A single-story model is constructed to investigate the feasibility of the concept. Numerical simulations of the system as well as experimental results show that 95% reduction of the transmitted force to the structure can be achieved. To demonstrate the effectiveness of this isolation mechanism, the maximum dynamic bending stress developed at predetermined critical points within the frame of the structure is measured. Significant reduction of the dynamic stresses is obtained.

Modified Earthquake resistant design for a concrete bridge in the Low to moderated seismic Region (중약진지역에 위치한 콘크리트교량의 수정내진 설계)

  • 국승규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.11-21
    • /
    • 2000
  • 구조물에 내진설계를 적용하는 목적은 지진에 노출되는 구조물에 안전성과 경제성을 고려한 파괴메카니즘을 부여하는 것이다. 내진설계에 보편적으로 적용하고 있는 응답스펙트럼해석법은 선형해석법으로 구조물의 비선형 동적거동에 의한 영향은 특정 계수로 반영한다. 그러나 기존의 내진설계시방서들이 강진지역에 있는 나라들에 의해 제정 및 개정되어 왔기 때문에 응답스펙트럼 해석법 뿐만 아니라 기타의 적용규정이 강진지역에 위치한 구조물의 상황만을 고려하여 제시되었다. 따라서 중약진지역에 위치한 구조물의 내진설계에 대한 별도의 연구가 요구되고 있다. 이 연구에서는 중약진지역에 위치한 콘크리트 교량을 선정하여 비선형 동적거동을 반영하는 계수를 결정하고 응답스펙트럼 해석법을 적용하였다. 연구 결과 바탕으로 중약진지역의 교량에 대해 내진설계의 목적을 만족하는 개선된 내진설계 절차를 제시하였다.

  • PDF

Development of High-Resolution Pacific Ocean Circulation Model

  • You Sung-Hyup;Yoon Jong-Hwan;Seo Jang-Won;Youn Yong-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.129-132
    • /
    • 2006
  • A Pacific Ocean circulation model based on the RIAM Ocean Model (RIAMOM) with $1/6^{\circ}C\;and\;1/12^{\circ}C$ horizontal resolution successfully reproduced the peculiar circulation structures of the Pacific Ocean. The volume transports of model agree very well with the results of observations in the northwestern Pacific Ocean. Also our model successfully reproduced the observed structures of the northeastward Ryukyu Current with a subsurface core at $500{\sim}600m$. A Possible mechanism for the subsurface current core of the Ryukyu Current is proposed focusing on the blocking effect of the Ryukyu Island Chain.

  • PDF

Nonlinear dynamic behavior of Pamukcay Earthfill Dam

  • Terzi, Niyazi U.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.83-100
    • /
    • 2015
  • Water and energy supplies are the key factors affecting the economic development and environmental improvement of Turkey. Given their important role and the fact that a large part of Turkey is in seismically active zones dams should be accurately analyzed since failure could have a serious impact on the local population environment and on a wider level could affect the economy. In this paper, a procedure is proposed for the static, slope stability, seepage and dynamic analysis of an earth dam and the Pamukcay embankment dam. The acceleration time history and maximum horizontal peak ground accelerations of the $Bing\ddot{o}l$ (2003) earthquake data was used based on Maximum Design Earthquake (MDE) data. Numerical analysis showed that, the Pamukcay dam is likely to experience moderate deformations during the design earthquake but will remain stable after the earthquake is applied. The result also indicated that, non-linear analysis capable of capturing dominant non-linear mechanism can be used to assess the stability of embankment dams.

Dynamic response analysis of the caisson-type quay wall using the wavelet transform (웨이브렛 변환을 이용한 케이슨식 안벽의 동적응답해석)

  • Moon, Yong;Kim, Jae-Kwon;Shin, Hyun-Yang;Seok, Jeong-Woo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.74-81
    • /
    • 2003
  • During the 1995 Hyogoken-Nambu earthquake, many caisson-type quay walls in Kobe Port moved several meters towards the seaside due to liquefaction and subsequent ground flow, To investigate the mechanism of quay wall damage, we carried out the numerical simulation using the 2-D effective stress analysis. Input earthquake motions used for the analyses are original Dip wave and the component wave in each compact support of wavelet transformation. The results suggested that the shear failure occurred in the foundation soil underneath the caisson type quay wall due to the deformation of the caisson type quay wall.

  • PDF

An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction (지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구)

  • Oh, Hyeon-Jun;Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.

Earthquake behavior of M1 minaret of historical Sultan Ahmed Mosque (Blue Mosque)

  • Kocaturk, Turgut;Erdogan, Yildirim Serhat
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.539-558
    • /
    • 2016
  • Minarets are almost the inevitable part of Mosques in Islam and according to some, from a philosophical point of view, today they symbolize the spiritual elevation of man towards God. Due to slenderness, minarets are susceptible to earthquakes and wind loads. They are mostly built in a masonry style by using cut limestone blocks or occasionally by using bricks. In this study, one minaret (M1 Minaret) of one of the charmest mosques of Turkey, Sultan Ahmed Mosque, popularly known as Blue Mosque, built between 1609 and 1616 on the order of Sultan Ahmed by the architect Mehmet Agha is investigated under some registered earthquake loads. According to historical records, a great earthquake hit Istanbul and/or its close proximity approximately every 250 years. Ottomans tackled with the problem of building earthquake resistant, slender minarets by starting to use forged iron connectors with lead as a filler to fix them to the upper and lower and to adjacent stones instead of using traditional mortar only. Thus, the discrete stones are able to transfer tensile forces in some sense. This study investigates the contribution of lead to the energy absorption capacity of the minaret under extensive earthquakes occurred in the region. By using the software ANSYS/LS-DYNA in modelling and investigating the minaret nonlinearly, it is found out that under very big recorded earthquakes, the connectors of vertical cast iron-lead mechanism play very important role and help to keep the structure safe.

Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake (2017 포항지진에 의한 필로티형 내력벽건물의 구조손상 분석)

  • Eom, Tae Sung;Lee, Seung Jae;Park, Hong Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • In 2017 Pohang Earthquake, a number of residential buildings with pilotis at their first level were severely damaged. In this study, the results of an analytical investigation on the seismic performance and structural damage of two bearing wall buildings with pilotis are presented. The vibration mode and lateral force-resisting mechanism of the buildings with vertical and plan irregularity were investigated through elastic analysis. Then, based on the investigations, methods of nonlinear modeling for walls and columns at the piloti level were proposed. By performing nonlinear static and dynamic analyses, structural damages of the walls and columns at the piloti level under 2017 Pohang Earthquake were predicted. The results show that the area and arrangement of walls in the piloti level significantly affected the seismic safety of the buildings. Initially, the lateral resistance of the piloti story was dominated mainly by the walls resisting in-plane shear. After shear cracking and yielding of the walls, the columns showing double-curvature flexural behavior contributed significantly to the residual strength and ductility.

Damage controlled optimum seismic design of reinforced concrete framed structures

  • Gharehbaghi, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • In this paper, an innovative procedure is proposed for the seismic design of reinforced concrete frame structures. The main contribution of the proposed procedure is to minimize the construction cost, considering the uniform damage distribution over the height of structure due to earthquake excitations. As such, this procedure is structured in the framework of an optimization problem, and the initial construction cost is chosen as the objective function. The aim of uniform damage distribution is reached through a design constraint in the optimization problem. Since this aim requires defining allowable degree of damage, a damage pattern based on the concept of global collapse mechanism is presented. To show the efficiency of the proposed procedure, the uniform damage-based optimum seismic design is compared with two other seismic design procedures, which are the strength-based optimum seismic design and the damage-based optimum seismic design. By using the three different seismic design methods, three reinforced concrete frames including six-, nine-, and twelve-story with three bays are designed optimally under a same artificial earthquake. Then, to show the effects of the uniform damage distribution, all three optimized frames are used for seismic damage analysis under a suite of earthquake records. The results show that the uniform damage-based optimum seismic design method renders a design that will suffer less damage under severe earthquakes.

Response Characters of Bridge Adopting StLRB (StLRB 지진격리장치를 적용한 교량의 거동특성과 비교분석)

  • Choi, Seung-Ho;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.139-146
    • /
    • 2004
  • In this paper, the seismic analysis and the modeling techniques have been introduced for seismic performances assessment, when seismic isolation bearings are applied to a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. El Centro earthquake(1940, N00W) used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.