• Title/Summary/Keyword: Earthquake magnitude

Search Result 481, Processing Time 0.027 seconds

Feasibility Study of MR Elastomer-based Base Isolation System (MR 엘라스토머를 이용한 기초격리 시스템에 대한 타당성 연구)

  • Jang, Dong-Doo;Usman, Muhammad;Sung, Seung-Hoon;Moon, Yeong-Jong;Jung, Hyung-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.597-605
    • /
    • 2008
  • The feasibility study of a newly proposed smart base isolation system employing magneto-rheological elastomers(MREs) has been carried out. MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration mitigation of civil engineering structures such as bridges and buildings in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base isolation system by improving the robustness of the system wide stiffness range controllable of MREs, which improves the adaptability and helps in better vibration control. To validate the effectiveness of the MRE-based isolation system, an extensive numerical simulation study has been performed using both single-story and five-story building structures employing base isolated devices under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

Variation of Dynamic Earth Pressure Due to Sliding of Retaining Walls (옹벽의 활동에 따른 배면 동적토압의 변화)

  • Yoon Suk-Jae;Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.55-61
    • /
    • 2005
  • Mononobe-Okabe method is generally used to evaluate dynamic earth pressure for the seismic design of retaining walls. However, Mononobe-Okabe method does not consider the effects of dynamic interactions between backfill soil and walls. In this research, shaking table tests on retaining walls were performed to analyze the phase and magnitude of dynamic earth pressure. The unit weight of walls, the amplitude of input acceleration and the base friction coefficient of walls were varied to analyze the influence of these factors on the dynamic earth pressure. Test results showed that the dynamic earth pressure was 180 degrees out of phase with the wall inertia force for the low sliding velocity of the wall, whereas small peaks of the dynamic earth pressure, which are in phase with the wall inertia force, were developed for the high sliding velocity of the wall. The amplitude of dynamic earth pressure was proportional to that of wall acceleration and the unit weight of the wall. In addition, the dynamic earth forces calculated by the Mononobe-Okabe method were the upper limit of the dynamic earth pressures.

Characteristics of Undrained Cyclic Shear Behavior for the Nak-dong River Sand Due to the Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 반복전단거동 특성)

  • Kim Dae-Man;Kim Young-Su;Jung Sung-Gwan;Seo In-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.13-26
    • /
    • 2005
  • It was known that the aging effect of sands is insignificant in comparison with clays, and hence the study on this effect had seldom been performed prior to the early 1980s. However, field tests for this effect have been actively carried out since it was investigated that penetration resistance of reformed sands increased with the lapse of time. Recently, the aging effect of sands has also been examined in laboratory testings. In this study, undrained static triaxial tests were performed to evaluate the effect on the Nak-dong River sands, with different .elative densities $(D_r)$, consolidation stress ratios $(K_c)$, and consolidation times. As a result of the tests, it was proved that the undrained cyclic shear strength $(R_f)$ increased with the aged time on the sands. The in situ range of Rf on the sands, which is applicable to the magnitude of earthquake in the Nak-dong River area, was proposed by using the test results.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

Generation of Synthetic Ground Motion in Time Domain (시간영역 인공지진파 생성)

  • Kim, Hyun-Kwan;Park, Du-Hee;Jeong, Chang-Gyun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • The importance of seismic design is greatly emphasized recently in Korea, resulting in an increase in the number of dynamic analysis being performed. One of the most important input parameters for the dynamic seismic analysis is input ground motion. However, it is common practice to use recorded motions from U.S. or Japan without considering the seismic environment of Korea or synthetic motions generated in the frequency domain. The recorded motions are not suitable for the seismic environment of Korea since the variation in the duration and energy with the earthquake magnitude cannot be considered. The artificial motions generated in frequency domain used to generated design response spectrum compatible ground motion has the problem of generating motions that have different frequency characteristics compared to real recordings. In this study, an algorithm that generates target response spectrum compatible ground motions in time domain is used to generate a suite of input ground motions. The generated motions are shown to preserve the non-stationary characteristics of the real ground motion and at the same, almost perfectly match the design response spectrum.

Probabilistic Analysis of Failure of Soil Slopes during Earthquakes (지진시 사면파괴의 확률론적 해석)

  • 김영수;정성관
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 1989
  • This study presents a probabilistic analysis of the stability of homogeneous soil slopes during earthquakes. The stability of the slope is measured through its probability of failure rather than the customary factor of safety. The maximum horizontal ground acceleration is deterimined with Donovan and McGuire equation. The earthquake magnitude (m) is a random variable the Probability density function f(m) has been obtained with a use of Richter law. The potential failure surfaces are taken to be of an exponential shape (log-spiral) , Uncertainties of the shear strength parameters along potential failure surface are expressed by one-dimensional random field model. From a first order analysis the mean and variance of safety margin is osculated. The dependence on significant seismic parameters of the probability of failure of the slope is examined and the results are presented in a number of graphs and tables. On the base of the results obtained in this study, it is concluled that (1) the present model is useful in assessing the reliability of soil slopes under both static and seismic conditions: and (2) the probability of failure of a soil slope is greatly affected by the values of the seismic parameters that are associated with it.

  • PDF

A Study on Algorithm for Determining Seismic Improvement Priority of Highway Bridges (도로교 내진보강 우선순위 결정을 위한 알고리즘에 관한 연구)

  • Kim, Hyung-Gyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.138-147
    • /
    • 2018
  • With the recent series of damage caused by earthquakes in Korea, such as Gyeongju and Pohang, we know that Korea is no longer a safe zone for earthquakes and that we need to be prepared for them. In addition, bridges built prior to the introduction of seismic design concepts remain without adequate seismic reinforcement measures, and earthquake reinforcement should be performed efficiently considering economic and structural safety. Preliminary assessment of seismic performance of existing bridges is divided into four seismic groups, taking into account seismicity, vulnerability and Impact, considering the magnitude of the existing bridge's seismic, and prioritization for further evaluation of seismic performance. In this study, unlike the existing anti-seismic reinforcement priority method, scores are calculated based on the seismic design criteria applied to bridges, importance coefficient of the bridge including the zone coefficient and the Importance, vulnerability index of the bridge including the soil condition and the elapsed years, detail coefficient of the bridge including the superstructure form, the span length, the width, the height, the design load, and the daily traffic volume. The calculated score items will be weighted and grouped according to the results. Using this, a simpler and more efficient algorithm was proposed to determine the priority of seismic reinforcement on a bridge.

Influence of soil model complexity on the seismic response of shallow foundations

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.193-203
    • /
    • 2021
  • The time-history finite element analysis is usually used to evaluate the seismic response of shallow foundations. However, the literature lacks studies on the influence of the soil constitutive model complexity on the seismic response of shallow foundations. This study, thus, aims to fill this gap by investigating the seismic response of shallow foundation resting on dry silica sand using the linear elastic (LE) model, elastic-perfectly-plastic (EPP) model, and hardening soil with small strain stiffness (HS small) model. These models have been used because it is intended to compare the results of a soil constitutive model that accurately captures the seismic response of the soil-structure interaction problems (which is the HS small model) with simpler models (the LE and EPP models) that are routinely used by practitioners in geotechnical designs. The results showed that the LE model produces a very small seismic settlement value which is approximately equal to zero. The EPP model predicts a seismic settlement higher than that produced using the HS small model for earthquakes with a peak ground acceleration (PGA) lower than 0.25 g for a relative density of 45% and 0.40 g for a relative density of 70%. However, the HS small model predicts a seismic settlement higher than the EPP model beyond the aforementioned PGA values with the difference between both models increases as the PGA rises. The results also showed that the LE and EPP models predict similar trend and magnitude of the acceleration-time relationship directly below the foundation, which was different than that predicted using the HS small model. The results reported in this paper provide a useful benchmark for future numerical studies on the response of shallow foundations subjected to seismic shake.

A Study on the Evaluation of the Effect of the Ground Improvement of Reclaimed Land Based on Dynamic Compaction Method (동다짐 공법이 적용된 준설매립지반의 개량효과 평가에 관한 연구)

  • Kim Jong-Kook;Chae Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.13-26
    • /
    • 2006
  • The purpose of this study is to examine the method of liquifaction potential occuring at the reclaimed land in Incheon district and to compare the result obtained by the method based on the earthquake of 6.5 magnitude. In addition, the effects of ground improvement and liquifaction potential were evaluated on the basis of SPT and CPT, which have been performed before and after the compaction pilot test. As a result, we realized that the bigger the energy of dynamic compaction test was, the better effect we got. After the dynamic compaction test, as the strength of ground increased, the safe factor also increased. It was evaluated that the method of dynamic compaction improved the seismic performance. Accordingly, the method of the quality control of reclaimed land based on dynamic compaction method was presented.

Arching Action Effect for Inelastic Seismic Responses of Bridge Structures (교량의 비탄성 지진응답에 대한 아칭작용의 영향)

  • Song, Jong-Keol;Nam, Wang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.131-143
    • /
    • 2009
  • Under transverse earthquake shaking, arching action of bridge structures develops along the deck between the abutments thus providing the so-called deck resistance. The magnitude of the arching action for bridge structures is dependent on the number of spans, connection condition between deck and abutment or piers, and stiffness ratio between superstructure and substructure. In order to investigate the arching action effects for inelastic seismic responses of PSC Box bridges, seismic responses evaluated by pushover analysis, capacity spectrum analysis and nonlinear time-history analysis are compared for 18 example bridge structures with two types of span numbers (short bridge, SB and long bridge, LB), three types of pier height arrangement (regular, semi-regular and irregular) and three types of connection condition between superstructure and substructure (Type A, B, C). The arching action effects (reducing inelastic displacement and increasing resistance capacity) for short bridge (SB) is more significant than those for long bridge (LB). Semi-regular and irregular bridge structures have more significant arching action than regular bridges.