• Title/Summary/Keyword: Earthquake load

Search Result 1,003, Processing Time 0.023 seconds

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.

New site classification system and design response spectra in Korean seismic code

  • Kim, Dong-Soo;Manandhar, Satish;Cho, Hyung-Ik
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A new site classification system and site coefficients based on local site conditions in Korea were developed and implemented as a part of minimum design load requirements for general seismic design. The new site classification system adopted bedrock depth and average shear wave velocity of soil above the bedrock as parameters for site classification. These code provisions were passed through a public hearing process before it was enacted. The public hearing process recommended to modify the naming of site classes and adjust the amplification factors so that the level of short-period amplification is suitable for economical seismic design. In this paper, the new code provisions were assessed using dynamic centrifuge tests and by comparing the design response spectra (DRS) with records from 2016 Gyeongju earthquake, the largest earthquake in history of instrumental seismic observation in Korea. The dynamic centrifuge tests were performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics, and the results corroborated with the new DRS. The Gyeongju earthquake records also showed good agreement with the DRS. In summary, the new code provisions are reliable for representing the site amplification characteristic of shallow bedrock condition in Korea.

Nonlinear analysis of a riverine platform under earthquake and environmental loads

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.343-354
    • /
    • 2018
  • A realistic FEM structural model is developed to predict the behavior, load transfer, force distribution and performance of a riverine platform under earthquake and environmental loads. The interaction between the transfer plate and the piles supporting the platform is investigated. Transfer plate structures have the ability to redistribute the loads from the superstructure above to piles group below, to provide safe transits of loads to piles group and thus to the soil, without failure of soil or structural elements. The distribution of piles affects the distribution of stress on both soil and platform. A materially nonlinear earthquake response spectrum analysis was performed on this riverine platform subjected to earthquake and environmental loads. A fixed connection between the piles and the platform is better in the design of the piles and the prospect of piles collapse is low while a hinged connection makes the prospect of damage high because of the larger displacements. A fixed connection between the piles and the platform is the most demanding case in the design of the platform slab (transfer plate) because of the high stress values developed.

The geomorphic characteristics of Bulguksa-region and the earthquake resistant structure of the Bulguksa-Temple

  • Hwang, Sang-Ill
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • Some reverse fault lines pass through the alluvial fans and west hill slope of Bulguksa mountains including Mt. Toham in the directions of N-S and NW-SE. The study area is known as relatively unstable, because of active faults. Assuming the record of earthquake in the Samguksagi, the architects in the construction of the Bulguksa temple should have recognized the possibility of breakdown from the earthquakes and the need for an unique structure against at that time. Against earthquakes, Greavee technique, a stonework construction technique following woothe one and use of Chushouok (Dongtleouok or Chumchaouok) were applied for the construction of Bulguksa temple. By designing the foundation stone with hole, a structure is prevented from motiff Ction that pillarsakdcede from a foundation stone in spite of horizontal load of earthquake while woot construction isaktrong frame at earthquake. The Bulguksa-temple isausually evaluated to be a beautiful architecture from the appeaultces like the weight balltced structure with unique decoration. ampressive architectures are beautiful in balance and harmony coming from the important and specific rolls in its own way by each part of whole structure. This beauty comes from the science.

  • PDF

Proposed Seismic Performance Evaluation Enhancement for Existing School Building (기존 학교 건축물의 내진성능평가 및 보강방안 제안)

  • Hwang, Ji-Hoon;Jang, Jeong-Hyun;Yang, Kyeong-Seok;Choi, Jae-Hyouk
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.4
    • /
    • pp.29-38
    • /
    • 2012
  • Recently large scale earthquake s are occurred around the world following the damage of buildings. So the interest of preparing for earthquake seismic design and seismic performance has becoming high. School buildings are though used for educational purpose; they are also used as emergency shelter for local residents during earthquake disaster. However, the current seismic design ratio of our country (Korea) is 3.7% and if massive earthquake is occurred it follows a serious damage. In order to overcome this situation, seismic performance evaluation is carried out for existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear static analysis on existing school buildings for ATC-40 and FEMA-356 are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to verify the effect of retrofit enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effect of seismic retrofit time history analysis using nonlinear dynamic analysis is also performed and nonlinear behavior of earthquake load of seismic retrofit of structures was also investigated.

Numerical study on fire resistance of cyclically-damaged steel-concrete composite beam-to-column joints

  • Ye, Zhongnan;Heidarpour, Amin;Jiang, Shouchao;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.673-688
    • /
    • 2022
  • Post-earthquake fire is a major threat since most structures are designed allowing some damage during strong earthquakes, which will expose a more vulnerable structure to post-earthquake fire compared to an intact structure. A series of experimental research on steel-concrete composite beam-to-column joints subjected to fire after cyclic loading has been carried out and a clear reduction of fire resistance due to the partial damage caused by cyclic loading was observed. In this paper, by using ABAQUS a robust finite element model is developed for exploring the performance of steel-concrete composite joints in post-earthquake fire scenarios. After validation of these models with the previously conducted experimental results, a comprehensive numerical analysis is performed, allowing influential parameters affecting the post-earthquake fire behavior of the steel-concrete composite joints to be identified. Specifically, the level of pre-damage induced by cyclic loading is regraded to deteriorate mechanical and thermal properties of concrete, material properties of steel, and thickness of the fire protection layer. It is found that the ultimate temperature of the joint is affected by the load ratio while fire-resistant duration is relevant to the heating rate, both of which change due to the damage induced by the cyclic loading.

Seismic analysis of a steam generator for Gyeongju and Pohang earthquakes

  • Myung Jo Jhung;Youngin Choi;Changsik Oh;Gangsig Shin;Chan Il Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1577-1586
    • /
    • 2023
  • Safety qualification of a steam generator is a crucial issue related to faulted condition design loads, including earthquake loads, and it should be ensured that the structural integrity of a steam generator does not exceed its design load. Using data from the Gyeongju and Pohang earthquakes, the two most powerful recorded seismic events in Korea, seismic analyses of a typical steam generator are conducted in this study. The modal characteristics are used to develop an input deck for these analyses. With a time history analysis, the responses of the steam generator in the event of an earthquake are obtained. In particular, the displacement, velocity, and acceleration responses are obtained in the time domain, with these outcomes then used for a detailed structural analysis as part of the ensuing assessment. The response spectra are also generated to determine the response characteristics in the frequency domain, focusing on the response comparisons between the Gyeongju and Pohang earthquakes. Structural integrity can be ensured by performing additional analysis using results obtained from the time history analysis considering the input excitations of various earthquakes considered in the design.

Cyclic Triaxial Test on Undisturbed Sample in the Fine-Grained Soils that Experienced Ground Settlement by Earthquake Loading and Improving Korean Method for Liquefaction Potential Assessment (지진시 지반침하가 발생한 세립토지반의 불교란시료를 대상으로 한 반복삼축시험의 수행과 국내 액상화 평가법의 제고)

  • Choi, Jae Soon;Baek, Woo Hyun;Jin, Yoon Hong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • In the case of the Pohang earthquake, which had a magnitude of 5.4 in 2017, geotechnical damages such as liquefaction and ground settlement occurred. The need for countermeasures has emerged, and experimental research in the Pohang area has continued. This study collected undisturbed samples from damaged fine-grained soil areas where ground settlement occurred in Pohang. Cyclic tri-axial tests for identifying the dynamic characteristics of soils were performed on the undisturbed samples, and the results were analyzed to determine the cause of ground settlement. As a result of the study, it was determined that in the case of fine-grained soils, ground settlement occurred because the seismic load as an external force was relatively more significant than the shear resistance of the very soft fine-grained soils, rather than due to an increase in excess pore water pressure.

Influence of Earthquake Shape on the Dynamic Behavior of Fluid in a Rectangular Structure (사각형 구조물에 저장된 유체의 동적거동에 미치는 시간-가속도 형상의 영향)

  • Park, Gun;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.59-66
    • /
    • 2017
  • In the case of fluid storage structure, hydrostatic pressure acts on the structure due to fluid surge during an earthquake. At this time, hydrodynamic pressure of the fluid charge not only by the strength of the earthquake but also by the sloshing height of the fluid. Factors affecting the change of load include the size, width and height of the fluid storage structure and height of fluid, time-history shape, etc. This paper wanted to identify the relationship between the earthquake shape and fluid free surface shape. The sloshing height measured the height of the fluid by applying earthquake to a tank whose width 500mm and comparison of the experiment and analysis. In addition, the shape of the fluid free surface was measured while varying the shape of earthquake and effective of the shape of earthquake of the fluid was analyzed.

High Frequency Approximation for Earthquake-Induced Hydrodynamic Loads in Rigid Stroage Tank (고주파수 근사해를 적용한 유체저장탱크에 작용하는 지진하중 산정)

  • 류정선;양우식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • The present paper describes an approximation for estimation of earthquake-induced hydrodynamic loads in rigid storage tank which accelerated in horizontal direction. The storage tank is vertically cylindrical, and the sectional shape may be circular, rectangular or irregular. The solution for harmonic excitation is studied based on velocity potential theory, and then the time domain solution for earthquake is obtained by using design response spectrum. As a result, earthquake load is influenced primarily by the inertia force of high frequency effective mass of the storage tank, responding to the characteristics of design response spectrum, tank sectional shape, and the ratio of tank base length to depth. Earthquake-induced hydrodynamic loads in rigid storage tank can be effectively obtained by using the high frequency approximation method in case of quite large, or small ratio of the tank base length to water depth.

  • PDF