• 제목/요약/키워드: Earthquake load

검색결과 1,003건 처리시간 0.022초

건축구조물의 시스템 식별을 통한 무리보행의 해석 (Analysis of Group Walking Loads by System Identification of Building Structures)

  • 김태호;민경원;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.267-274
    • /
    • 2003
  • The objective of this study is to estimate the frequency characteristics of group walking loads based on the information of measured responses. At first, dynamic properties such as natural frequencies and modes are obtained from input/output relation for building structures by heel drop test. Second, a method to estimate group walking loads by the transfer functions from measured responses to group walking loads is proposed. The method turned out to estimate the group walking loads accurately. Higher modes could be important in estimating the amplitude of group walking loads with the information of single walking load.

  • PDF

Lateral load sharing and response of piled raft foundation in cohesionless medium: An experimental approach

  • Dinesh Kumar Malviya;Manojit Samanta
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.139-155
    • /
    • 2024
  • The piled raft foundations are subjected to lateral loading under the action of wind and earthquake loads. Their bearing behavior and flexural responses under these loadings are of prime concern for researchers and practitioners. The insufficient experimental studies on piled rafts subjected to lateral loading lead to a limited understanding of this foundation system. Lateral load sharing between pile and raft in a laterally loaded piled raft is scarce in literature. In the present study, lateral load-displacement, load sharing, bending moment distribution, and raft inclinations of the piled raft foundations have been discussed through an instrumented scaled down model test in 1 g condition. The contribution of raft in a laterally loaded piled raft has been evaluated from the responses of pile group and piled raft foundations attributing a variety of influential system parameters such as pile spacing, slenderness ratio, group area ratio, and raft embedment. The study shows that the raft contributes 28-49% to the overall lateral capacity of the piled raft foundation. The results show that the front pile experiences 20-66% higher bending moments in comparison to the back pile under different conditions in the pile group and piled raft. The piles in the piled raft exhibit lower bending moments in the range of 45-50% as compared to piles in the pile group. The raft inclination in the piled raft is 30-70% less as compared to the pile group foundation. The lateral load-displacement and bending moment distribution in piles of the single pile, pile group, and piled raft has been presented to compare their bearing behavior and flexural responses subjected to lateral loading conditions. This study provides substantial technical aid for the understanding of piled rafts in onshore and offshore structures to withstand lateral loadings, such as those induced by wind and earthquake loads.

소방배관 형상에 따른 배관 내진해석 (Seismic Analysis of Firefighting Pipe Networks)

  • 최호성;이재오
    • 한국화재소방학회논문지
    • /
    • 제33권5호
    • /
    • pp.149-154
    • /
    • 2019
  • 지진 발생 시 소방배관의 안전성은 무엇보다 중요하다. 국내의 경우 국가화재안전기준(NFSC)에 따라 사양위주의 설계를 하고 있지만 특별한 성능이 요구되는 건물에는 공학적인 성능위주 설계를 적용하고 있다. 소방배관의 경우 트리방식을 적용하여 왔다. 하지만 여러 단점으로 인해 최근에는 그리드방식, 루프방식을 적용하고 있다. 국내 소방 배관 내진설계는 NFPA 13 의 cook book 방식을 적용하고 있지만, 신뢰성을 확보하기 위해서는 공학적인 해석이 필요하다. 국내에서 적용 중인 NFPA 13 기준은 ASCE 와 ASME 의 지침을 준용한 것으로 지진이나 배관의 공학적 해석이 부족한 기술자들이 사용하도록 만들어 놓은 설계방식이다. 국내 내진설계는 버팀대에 대한 검토만 진행되고 있다. 하지만 신뢰성 있는 해석을 위해서는 배관의 내압, 지속 하중에 의한 힘, 지진과 같은 하중 조건에서의 다양한 해석이 요구된다. 공학적 내진해석을 통해 트리방식 배관은 그리드나 루프 방식의 배관에 비해 안전성이 떨어지는 것을 알 수 있었으며, 응력 기반의 내진해석 방식과 변형률 기반의 해석방식을 비교한 결과 변형률 해석이 Over Stress 범위에서는 보수적인 결과 값을 보였다. 배관의 내진해석은 일률적인 계산을 통한 해석보다 공학적 해석을 통해 엔지니어가 본인의 의도에 맞게 해석을 하는 것이 좀 더 합리적이며, 여러 가지 해석조건을 고려하여 분석되어야 한다.

보조보강재가 있는 콘크리트 충전 강교각의 내진성능 평가 (Seismic Evaluation of concrete-Filled Steel Piers with Secondary Reinforcement)

  • 박병기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.349-356
    • /
    • 2000
  • Strenght and ductility are major factors in the aseismic design of a bridge pier. In spite of good performance in both steel piers have not been used widely due to high cost. But with the filled-in concrete the steel pier have advantages compare to the steel pier only such as improved strength ductility fast construction small section and reasonable cost. In this paper concrete-filled steel piers are tested using quasi-static cyclic lateral load with constant axial load to evaluate the performance. The secondary reinforcement devices such as bolts corner plate and turn buckle are used inside of the piers to improve the ductility with minimum additional cost. Test results shows filled-in concrete and secondary reinforcement devices increase the strength and the ductility of the steel pier.

  • PDF

점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석 (Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper)

  • 김진구
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.186-193
    • /
    • 2000
  • In this study the effect and applicability of viscoelastic dampers on the seismic reinforcement of steel framed structures are investigated in the context of the performance based design approach. The effect of the damper on dissipating the input seismic energy was investigated with a single degree of freedom system. For analysis models a five-story steel frame subjected to gravity load and a ten-story structure subjected to gravity and wind load were designed. the code-specified design spectrums were constructed for each soil type and performance objective and artificial ground excitation records to be used in the nonlinear time history analysis were generated based on the design spectrums. Interstory drift was adopted as the primary performance criterion. According to the analysis results both model structures turned out to satisfy the life safety performance level for most of the soil conditions except for the soft soil. It was also found that the seismic performance could be greatly enhanced by installing viscoelastic dampers on appropriate locations.

  • PDF

강제진동시험자료를 사용한 지반의 강성계수 추정 (Identification of Soil Stiffness Using Forced Vibration Test Data)

  • 최준성;이종세;김동수;이진선
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.101-108
    • /
    • 2002
  • This paper presents an input and system identification technique for a free-field system using forced vibration data. Identification is carried out on geotechnical experiment site at Yong-jong Island where Inchon International Airport being constructed. The identified quantities are the input load as well as the shear moduli of the free-field soil regions. The dynamic response analysis on the free-field system is carried out using the finite element method incorporating the infinite element formulation fur the unbounded layered soil medium. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the dynamic responses measured at several points of the free-field, so that the information on the input loading may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated dynamic responses using the identified parameters and input load show excellent agreements with the measured responses.

  • PDF

Angle형 기기 정착부의 성능평가에 관한 실험적 연구 (A study on the experimental evaluation of an Angle Type Anchorage System)

  • 김강식;서용표;유원진;김갑순
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.266-274
    • /
    • 2002
  • A typical case where the effects of prying in the base angle type anchorage system with expansion bolt. This connection consists of an angle which is attathed to an equipment cabinet and bolted to a concrete slab via an expantion bolt. A seismic analysis of the cabinet may indicate a vertical load, P, transferred to the vertical leg of the angle due to overturning of the cabinet. Due to the eccentricity, b(e), and the continuous beam action in the base member, the load resisted by the bolt will be amplified by a factor λ. Thus, in this study, experimental evaluation of the anchorage system is executed.

  • PDF

물량저감 철근상세를 갖는 중공 철근콘크리트 교각 시스템: I. 개발 및 검증 (Hollow Reinforced Concrete Bridge Column Systems with Reinforcement Details for Material Quantity Reduction: I. Development and Verification)

  • 김태훈;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2014
  • The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction. The proposed reinforcement details have economic feasibility and rationality and make construction periods shorter. A model of hollow reinforced concrete bridge columns was tested under a constant axial load and a quasi-static cyclically reversed horizontal load. As a result, proposed reinforcement details for material quantity reduction were equal to existing reinforcement details in terms of required performance. The companion paper presents the experimental and analytical study for the performance assessment of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction.

필 댐에 관한 지진하중-간극수압의 상호작용 평가를 위한 기초연구 (An Basic Estimation for the Mutual action of Seismic load-Pore Pressure about Fill dam)

  • 정의중;백성철;남열우;이섬범;박인준;김홍택
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.275-278
    • /
    • 2007
  • 필 댐의 내진해석은 간극수압을 고려하지 않을 경우에는 지진에 의한 동수압을 고려할 수 없기 때문에 지진력을 과소평가할 수 있다 그러나 현재까지도 필 댐의 내진해석에서 주요 변수에 따른 동수압의 변화는 연구 실적이 많지 않다. 따라서 본 연구에서는 지진하중과 간극수압을 모두 고려하는 경우에 대해 다양한 변수분석을 수행하여 지진과 간극수압의 상호작용을 알아보았다.

  • PDF

철근콘크리트 원형단면 교각의 유효강성 (Effective Stiffness of Circular Reinforced Bridge Columns)

  • 배성용;김준범;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.833-838
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of circular reinforced bridge columns and to provide reasonable effective stiffness equations for seismic design to the current Korean Bridge Design Standard. The material nonlinear analysis was conducted for 5184 columns of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. The current Korean Bridge Design Standard generally used the gross section stiffness because of unclear provision, it may be non-conservative because of being evaluated greater design seismic force and less design displacement than those of the abroad provision. Therefore, the proposed effective stiffness equations include three variables such as : the longitudinal steel location parameter, the longitudinal steel ratio, and the axial load ratio. Two equations of effective stiffness are proposed which may be used for earthquake force estimation and for earthquake displacement estimation, respectively.

  • PDF