• Title/Summary/Keyword: Earthquake damage assessment

Search Result 256, Processing Time 0.023 seconds

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

New Statistical Pattern Recognition Technology for Condition Assessment of Cable-stayed Bridge on Earthquake Load (지진하중을 받는 사장교의 상태평가를 위한 새로운 통계적 패턴 인식 기술)

  • Heo, Gwanghee;Kim, Chunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.747-754
    • /
    • 2014
  • In spite of its usefulness for health monitoring of structures on steady external load, the statistical pattern recognition technology (SPRT), based on Mahalanobis distance theory (MDT), is not good enough for the health monitoring of structures on large variability external load like earthquake. Damage is usually determined by the difference between the average measured value of undamaged structure and the measure value of damaged one. So when external variability gets larger, the difference gets bigger along, which is thus easily mistaken for a damage. This paper aims to overcome the problem and develop an improved Mahalanobis distance theory (IMDT), that is, a SPRT with revised MDT in order to decrease external variability so that we will be able to continue to monitor the structure on uncertain external variability. This method is experimentally tested to see if it precisely evaluates the health of a cable-stayed bridge on each general random load and earthquake load. As a result, the IMDT is found to be valid in locating structural damage made by damaged cables by means of data from undamaged cables. So it is proved to be effectively applicable to the health monitoring of bridges on external load of variability.

Evaluation of structural operativity of two strategic buildings through Seismic Model

  • Foti, Dora;Giannoccaro, Nicola Ivan;Greco, Pierluigi;Lerna, Michela;Paolicelli, Raffaele;Vacca, Vitantonio
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.45-57
    • /
    • 2020
  • This paper presents the experimental application of a new method for seismic vulnerability assessment of buildings recently introduced in literature, the SMAV (Seismic Model Ambient Vibration) methodology with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. They do not suffer such damage as to compromise the operation within a framework of assessment of the overall capacity of the urban system. To this end, for the characterization of their operational vulnerability, a Structural Operational Index (IOPS) has been considered. In particular, the dynamic environmental vibrations of the two considered strategic buildings, the fire station and the town hall building of a small town in the South of Italy, have been monitored by positioning accelerometers in well-defined points. These measurements were processed through modern Operational Modal Analysis techniques (OMA) in order to identify natural frequencies and modal shapes. Once these parameters have been determined, the structural operational efficiency index of the buildings has been determined evaluating the seismic vulnerability of the strategic structures analyzed. his study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake.

A Study on the Risk Analysis of the RC Structure Subjected to Seismic Loading (철근콘크리트 구조물의 지진 위험성 분석에 관한 연구)

  • 이성로
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.183-192
    • /
    • 1994
  • Seismic safety of RC structure can be evaluated by numerical analysis considering randomness of earthquake motion and hysteretic behavior of reinforced concrete, which is more rational than determirustic analysis. In the safety assessment of aseismatic structures by the deterministic theory, it is not easy to consider th effects of random variables but the reliability theory and random vibration theory are useful to assess seismic safety with considering random effects. This study aims at the evaluation of sesmic damage and risk of the RC frame structure by stochastic response analysis of hysteretic system and then the calculation stages of the prob ability of failure are presented.

Non-linear dynamic assessment of low-rise RC building model under sequential ground motions

  • Haider, Syed Muhammad Bilal;Nizamani, Zafarullah;Yip, Chun Chieh
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.789-807
    • /
    • 2020
  • Multiple earthquakes that occur during short seismic intervals affect the inelastic behavior of the structures. Sequential ground motions against the single earthquake event cause the building structure to face loss in stiffness and its strength. Although, numerous research studies had been conducted in this research area but still significant limitations exist such as: 1) use of traditional design procedure which usually considers single seismic excitation; 2) selecting a seismic excitation data based on earthquake events occurred at another place and time. Therefore, it is important to study the effects of successive ground motions on the framed structures. The objective of this study is to overcome the aforementioned limitations through testing a two storey RC building structural model scaled down to 1/10 ratio through a similitude relation. The scaled model is examined using a shaking table. Thereafter, the experimental model results are validated with simulated results using ETABS software. The test framed specimen is subjected to sequential five artificial and four real-time earthquake motions. Dynamic response history analysis has been conducted to investigate the i) observed response and crack pattern; ii) maximum displacement; iii) residual displacement; iv) Interstorey drift ratio and damage limitation. The results of the study conclude that the low-rise building model has ability to resist successive artificial ground motion from its strength. Sequential artificial ground motions cause the framed structure to displace each storey twice in correlation with vary first artificial seismic vibration. The displacement parameters showed that real-time successive ground motions have a limited impact on the low-rise reinforced concrete model. The finding shows that traditional seismic design EC8 requires to reconsider the traditional design procedure.

Axial load detection in compressed steel beams using FBG-DSM sensors

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Lee, Zheng-Kuan;Tullini, Nerio
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.53-64
    • /
    • 2018
  • Nondestructive testing methods are required to assess the condition of civil structures and formulate their maintenance programs. Axial force identification is required for several structural members of truss bridges, pipe racks, and space roof trusses. An accurate evaluation of in situ axial forces supports the safety assessment of the entire truss. A considerable redistribution of internal forces may indicate structural damage. In this paper, a novel compressive force identification method for prismatic members implemented using static deflections is applied to steel beams. The procedure uses the Euler-Bernoulli beam model and estimates the compressive load by using the measured displacement along the beam's length. Knowledge of flexural rigidity of the member under investigation is required. In this study, the deflected shape of a compressed steel beam is subjected to an additional vertical load that was short-term measured in several laboratory tests by using fiber Bragg grating-differential settlement measurement (FBG-DSM) sensors at specific cross sections along the beam's length. The accuracy of midspan deflections offered by the FBG-DSM sensors provided excellent force estimations. Compressive load detection accuracy can be improved if substantial second-order effects are induced in the tests. In conclusion, the proposed method can be successfully applied to steel beams with low slenderness under real conditions.

Fragility Analysis for Evaluation and Comparison of Seismic Performance of Building Structures (취약도 해석을 통한 빌딩구조물의 내진성능 비교 및 평가)

  • Park, Joo-Nam;Choi, Eun-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.11-21
    • /
    • 2007
  • Potential damage and losses associated with structural systems caused by earthquake can be reduced by application of seismic design to the structures. Because the building cost required for seismic design is generally higher than the cost for non-seismic design, the application of seismic design must be justified considering both seismic performance and cost. This paper presents a risk-based fiamework for evaluation and comparison of seismic performance of structures such that necessary data can be supplied for decision making on seismic design. Seismic fragility curve is utilized for seismic risk assessment of structures, and the process for decision analysis on adaptation of seismic design is presented based on the equivalent cost model.

Time Dependent Reliability Analysis of the Degrading RC Containment Structures Subjected to Earthquake Load (지진하중을 받는 RC 격납건물의 열화에 따른 신뢰성 해석)

  • 오병환;최성철;현창헌
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.559-564
    • /
    • 2000
  • Nuclear power plant structures amy be exposed to aggressive environmental effects that may cause their strength and stiffness to decrease over their service lives. Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The final goal of this study is to develop the reliability analysis of RC containment structures. The cause of the degrading is first clarified and the reliability assessment has been conducted. By introducing stochastic analysis based on random vibration theory, the reliability analysis which can determine the failure probabilities has been established.

  • PDF

Nonlinear FEM Analysis for Damage Assessment of Steel Members under Very-Low-Cycle Loading (극저(極低)사이클 하중하(荷重下)에서 강부재(鋼部材)의 손상도평가(損傷度評價)를 위한 유한요소해석(有限要素解析))

  • Park, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.703-710
    • /
    • 1994
  • A nonlinear FEM analysis of steel members under very-low-cycle loading has been performed in conjunction with experimental works. This analysis is an FEM tracing toward cracking of steel members under cyclic loads such as a strong earthquake. After verifying the procedure by comparing global hysteretic behaviors from the analytical and experimental results, the local stress-strain hysteresis at critical sections for large cyclic deformations was traced by the numerical analysis. Local strain history was discussed in relation to cracking. Based on the experimental and analytical results, a new approach to seismic safety assessment for steel members was proposed in this paper.

  • PDF

Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges

  • Khorraminejad, Amir;Sedaghati, Parshan;Foliente, Greg
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.389-403
    • /
    • 2021
  • Skewed bridges, being irregular structures with complicated dynamic behavior, are more susceptible to earthquake damage. Reliable seismic-resistant design of skewed bridges can be achieved by accurate determination of nonlinear seismic demands. However, the effect of geometric characteristics on the response modification factor (R-factor) is not accounted for in bridge design practices. This study attempts to investigate the effects of changes in the number of spans, skew angle and bearing stiffness on R-factor values and to assess the seismic fragility of skewed bridges. Results indicated that changes in the skew angle had no significant effect on R-factor values which were in consonance with code-prescribed R values. Also, unlike the increase in the number of spans that resulted in a decrease in the R-factor, the increase in bearing stiffness led to higher R-factor values. Findings of the fragility analysis implied that although the increase in the number of spans, as well as the increase in the skew angle, led to a higher failure probability, greater values of bearing stiffness reduced the collapse probability. For practicing design engineers, it is recommended that maximum demands on substructure elements to be calculated when the excitation angle is applied along the principal axes of skewed bridges.