• Title/Summary/Keyword: Earthquake damage assessment

Search Result 256, Processing Time 0.023 seconds

Evaluation of Seismic Fragility of Concrete Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐의 지진 취약도 평가)

  • Baeg, Jongmin;Park, Duhee;Yoon, Jinam;Choi, Byoung-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.103-108
    • /
    • 2018
  • The fragility curves for CFRD dams are derived in this study for probabilistic damage estimation as a function of a ground motion intensity. The dam crest settlement, which is a widely used damage index, is used for minor, moderate, and extensive damage states. The settlement is calculated from nonlinear dynamic numerical simulations. The accuracy of the numerical model is validated through comparison with a centrifuge test. The fragility curve is represented as a log normal distribution function and presented as a function of the peak ground acceleration. The fragility curves developed in this study can be utilized for real time assessment of the damage of dams.

Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework

  • Amini, Ali;Kia, Mehdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.351-368
    • /
    • 2021
  • This paper, by applying a reliability-based framework, develops seismic vulnerability macrozonation maps for Tehran, the capital and one of the most earthquake-vulnerable city of Iran. Seismic performance assessment of 3-, 4- and 5-story steel moment resisting frames (SMRFs), designed according to ASCE/SEI 41-17 and Iranian Code of Practice for Seismic Resistant Design of Buildings (2800 Standard), is investigated in terms of overall maximum inter-story drift ratio (MIDR) and unit repair cost ratio which is hereafter known as "damage ratio". To this end, Tehran city is first meshed into a network of 66 points to numerically locate low- to mid-rise SMRFs. Active faults around Tehran are next modeled explicitly. Two different combination of faults, based on available seismological data, are then developed to explore the impact of choosing a proper seismic scenario. In addition, soil effect is exclusively addressed. After building analytical models, reliability methods in combination with structure-specific probabilistic models are applied to predict demand and damage ratio of structures in a cost-effective paradigm. Due to capability of proposed methodology incorporating both aleatory and epistemic uncertainties explicitly, this framework which is centered on the regional demand and damage ratio estimation via structure-specific characteristics can efficiently pave the way for decision makers to find the most vulnerable area in a regional scale. This technical basis can also be adapted to any other structures which the demand and/or damage ratio prediction models are developed.

Seismic risk assessment of staggered wall system structures

  • Kim, Jinkoo;Baek, Donggeol
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.607-624
    • /
    • 2013
  • In this study the seismic risk assessments of six- and twelve-story staggered wall system structures with three different structural variations were performed. The performances of staggered wall structures with added columns along the central corridor and the structures with their first story walls replaced by beams and columns were compared with those of the regular staggered wall structures. To this end incremental dynamic analyses were carried out using twenty two pairs of earthquake records to obtain the failure probabilities for various intensity of seismic load. The seismic risk for each damage state was computed based on the fragility analysis results and the probability of occurrence of earthquake ground motions. According to the analysis results, it was observed that the structures with added columns along the central corridor showed lowest probability of failure and seismic risk. The structures with their first story walls replaced by beams and columns showed lowest margin for safety.

Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test (유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가)

  • 이은희;정영수;박창규;김영섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

Evaluation of rigid-end offset effect on seismic behavior of a structure subjected to Van earthquake

  • Bekiroglu, Serkan;Sahina, Abdurrahman;Sevima, Baris;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.857-879
    • /
    • 2013
  • Numerical damage assessment of Van train station building consisting of three RC blocks due to 2011 Van Earthquakes by nonlinear dynamic analysis is presented. The structural model is created with rigid-end offsets and plastic hinges for nonlinear analysis. Rigid-end offsets are considered for connection areas and proposed for wall-supported elements. In wall-supported elements, walls take place in a limited part of the columns. Nonlinear dynamic analysis of the building with and without rigid-end offsets is performed by using real earthquake records and results are compared. The results show that rigid-end offsets have significant effects on the seismic behavior of the structures.

Vulnerability assessment of residential steel building considering soil structure interaction

  • Kailash Chaudhary;Kshitij C. Shrestha;Ojaswi Acharya
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 2023
  • Special moment resisting steel frame structures are now being used commonly in highly seismic regions as seismically reliable structures. However, a very important parameter describing the dynamics of steel structures during earthquake loading, Soil Structure Interaction (SSI), is generally neglected. In this study, the significance of consideration of flexibility of soil in being able to obtain a result closer to reality is asserted. The current paper focuses on calculation of seismic fragility curves special moment resisting steel frame structures under different earthquake loadings for fixed-base and SSI models. The observation of obtained fragility curves lead to the conclusion that the SSI has a considerable effect on component fragility for the steel structures, with its effects decreasing for higher peak ground acceleration. The results show that the structures when considered SSI have a higher probability of exceeding a damage limit state. This observation attests the role of SSI in the accurate study of structural performance.

Practical seismic assessment of unreinforced masonry historical buildings

  • Pardalopoulos, Stylianos I.;Pantazopoulou, Stavroula J.;Ignatakis, Christos E.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.195-215
    • /
    • 2016
  • Rehabilitation of historical unreinforced masonry (URM) buildings is a priority in many parts of the world, since those buildings are a living part of history and a testament of human achievement of the era of their construction. Many of these buildings are still operational; comprising brittle materials with no reinforcements, with spatially distributed mass and stiffness, they are not encompassed by current seismic assessment procedures that have been developed for other structural types. To facilitate the difficult task of selecting a proper rehabilitation strategy - often restricted by international treaties for non-invasiveness and reversibility of the intervention - and given the practical requirements for the buildings' intended reuse, this paper presents a practical procedure for assessment of seismic demands of URM buildings - mainly historical constructions that lack a well-defined diaphragm action. A key ingredient of the method is approximation of the spatial shape of lateral translation, ${\Phi}$, that the building assumes when subjected to a uniform field of lateral acceleration. Using ${\Phi}$ as a 3-D shape function, the dynamic response of the system is evaluated, using the concepts of SDOF approximation of continuous systems. This enables determination of the envelope of the developed deformations and the tendency for deformation and damage localization throughout the examined building for a given design earthquake scenario. Deformation demands are specified in terms of relative drift ratios referring to the in-plane and the out-of-plane seismic response of the building's structural elements. Drift ratio demands are compared with drift capacities associated with predefined performance limits. The accuracy of the introduced procedure is evaluated through (a) comparison of the response profiles with those obtained from detailed time-history dynamic analysis using a suite of ten strong ground motion records, five of which with near-field characteristics, and (b) evaluation of the performance assessment results with observations reported in reconnaissance reports of the field performance of two neoclassical torsionally-sensitive historical buildings, located in Thessaloniki, Greece, which survived a major earthquake in the past.

Health monitoring of reinforced concrete slabs subjected to earthquake-type dynamic loading via measurement and analysis of acoustic emission signals

  • Gallego, Antolino;Benavent-Climent, Amadeo;Infantes, Cristobal
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.385-398
    • /
    • 2011
  • This paper discusses the applicability of Acoustic Emission (AE) to assess the damage in reinforced concrete (RC) structures subjected to complex dynamic loadings such as those induced by earthquakes. The AE signals recorded during this type of event can be complicated due to the arbitrary and random nature of seismicity and the fact that the signals are highly contaminated by many spurious sources of noise. This paper demonstrates that by properly filtering the AE signals, a very good correlation can be found between AE and damage on the RC structure. The basic experimental data used for this research are the results of fourteen seismic simulations conducted with a shake table on an RC slab supported on four steel columns. The AE signals were recorded by several low-frequency piezoelectric sensors located on the bottom surface of the slab. The evolution of damage under increasing values of peak acceleration applied to the shake table was monitored in terms of AE and dissipated plastic strain energy. A strong correlation was found between the energy dissipated by the concrete through plastic deformations and the AE energy calculated after properly filtering the signals. For this reason, a procedure is proposed to analyze the AE measured in a RC structure during a seismic event so that it can be used for damage assessment.

Propose of Capacity Spectrum Method by Nonlinear Earthquake Response Analysis (질점계 비선형 지진응답해석에 의한 구조물의 역량스펙트럼 제안)

  • You, Jin-Sun;Yang, Won-Jik;Yi, Waon-Ho;Kim, Hyoung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.501-508
    • /
    • 2014
  • In this paper, a method on deducing the capacity spectrum based on nonlinear earthquake response analysis will be introduced. Damage assessment of general building draws the capacity spectrum through the Push-over analysis and the intersection point of capacity spectrum and demand spectrum is seen as performance point. Push-over analysis is the way to perform static analysis by using the equivalent static load changed from the effect of earthquake and predict the behavior of structures by earthquake. But, this method can not be taken into account in the effects of higher mode and the dynamic characteristic. Therefore, in order to calculate the capacity spectrum under dynamic properties of building. A capacity spectrum from going ahead with the nonlinear earthquake response analysis is suggested.

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.