• Title/Summary/Keyword: Earthquake damage

Search Result 1,203, Processing Time 0.032 seconds

Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake (2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점)

  • Lee, Cheol Ho;Park, Ji-Hun;Kim, Taejin;Kim, Sung-Yong;Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

A Study on the Connection Method for the Collapse Damage of Electric Power Facilities due to Earthquake Effects (지진 영향으로 인한 전기시설물의 붕괴피해 연계 방안 연구)

  • Lee, Byung-Hoon;Lee, Byung-Jin;Oh, Seung-Hee;Jung, Woo-Sug;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.203-208
    • /
    • 2018
  • In this paper, we selected power and power distribution facilities corresponding to urban infrastructure from the types of damage that could be caused by earthquakes and studied how they were calculated to damage. To calculate the damage, a graph of the magnitude of the damage was produced by applying the vulnerability curve calculation formula, which can be calculated for each type and type of facility. The scale of the earthquake and the probability of the occurrence of damage by the maximum earthquake acceleration were shown in the form of a vulnerability rate when the earthquake occurred in the urban infrastructure facility for utilizing the calculation result. It also applied a method of quantifying the fragility, which is a method of converting the calculated fragility into an integrated form, to represent a constant value for the magnitude of the damage. Continuing research, such as the method applied in this paper, could help identify in advance the types of structures affected by an earthquake and respond to reducing damage.

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Effect of Vertical Ground Motion on Earthquake Response of Concrete Dams (콘크리트댐 지진응답에서의 수직 지반운동의 영향)

  • 이지호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.190-195
    • /
    • 2001
  • In the present paper computational simulation of a concrete dam is performed to determine the effect of vertical ground motions on earthquake response of concrete dams. Cyclic and dynamic versions of the plastic-damage model proposed by Lee and Fenves are used to represent micro-crack development and crack opening/closing, which is important mechanism in nonlinear damage analysis of concrete structures subject to strong earthquake loading. The result shows that the vertical component of ground motion effects on final crack patterns and consequently, on displacement response.

  • PDF

Scenario-Based Earthquake Damage Estimation of Bridge Structures in Daegu City Using Hazus-MH Methodology (Hazus-MH 방법을 이용한 대구시 교량의 시나리오 지진에 의한 피해 예측)

  • Kim, Siyun;Kim, Sung Jig;Chang, Chunho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.89-96
    • /
    • 2018
  • The paper presents the damage estimation of bridge structures in Daegu city based on the scenario-based earthquakes. Since the fragility curves for domestic bridge strucures are limited, the Hazus methodology is employed to derive the fragility curves and estimate the damage. A total of four earthuquake scenarios near Daegu city are assumed and structure damage is investigated for 81 bridge structures. The seismic fragility function and damage level of each bridge had adopted from the analytical method in HAZUS and then, the damage probability using seismic fragility function for each bridge was evaluated. It was concluded that the seismic damage to bridges was higher when the magnitude of the earthquake was large or nearer to the epicenter.

The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT

  • Tahir, Saeed I.;Tounsi, Abdelouahed;Chikh, Abdelbaki;Al-Osta, Mohammed A.;Al-Dulaijan, Salah U.;Al-Zahrani, Mesfer M.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.501-511
    • /
    • 2022
  • Earthquake Resistant Design Philosophy seeks (a) no damage, (b) no significant structural damage, and (c) significant structural damage but no collapse of normal buildings, under minor, moderate and severe levels of earthquake shaking, respectively. A procedure is proposed for seismic design of low-rise reinforced concrete special moment frame buildings, which is consistent with this philosophy; buildings are designed to be ductile through appropriate sizing and reinforcement detailing, such that they resist severe level of earthquake shaking without collapse. Nonlinear analyses of study buildings are used to determine quantitatively (a) ranges of design parameters required to assure the required deformability in normal buildings to resist the severe level of earthquake shaking, (b) four specific limit states that represent the start of different structural damage states, and (c) levels of minor and moderate earthquake shakings stated in the philosophy along with an extreme level of earthquake shaking associated with the structural damage state of no collapse. The four limits of structural damage states and the three levels of earthquake shaking identified are shown to be consistent with the performance-based design guidelines available in literature. Finally, nonlinear analyses results are used to confirm the efficacy of the proposed procedure.

Damage assessment of buildings after 24 January 2020 Elazığ-Sivrice earthquake

  • Nemutlu, Omer Faruk;Balun, Bilal;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2021
  • The majority of Turkey's geography is at risk of earthquakes. Within the borders of Turkey, including the two major active faults contain the North-Eastern and Eastern Anatolia, earthquake, threatening the safety of life and property. On January 24, 2020, an earthquake of magnitude 6.8 occurred at 8:55 p.m. local time. According to the data obtained from the stations in the region, peak ground acceleration in the east-west direction was measured as 0.292 g from the 2308 coded station in Sivrice. It is thought that the earthquake with a magnitude of Mw 6.8 was developed on the Sivrice-Puturge segment of the Eastern Anatolian Fault, which is a left lateral strike slip fault, and the tear developed in an area of 50-55 km. Aftershocks ranging from 0.8 to 5.1 Mw occurred following the main shock on the Eastern Anatolian Fault. The earthquake caused severe structural damages in Elazığ and neighboring provinces. As a result of the field investigations carried out in this study, significant damage levels were observed in the buildings since it did not meet the criteria in the earthquake codes. Within the study's scope, the structural damage cases in reinforced concrete and masonry structures were investigated. Many structural deficiencies and mistakes such as non-ductile details, poor concrete quality, short columns, strong beams-weak columns mechanism, large and heavy overhangs, masonry building damages and inadequate reinforcement arrangements were observed. Requirements of seismic codes are discussed and compared with observed earthquake damage.

Quasi real-time post-earthquake damage assessment of lifeline systems based on available intensity measure maps

  • Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.873-889
    • /
    • 2015
  • In civil engineering, probabilistic seismic risk assessment is used to predict the economic damage to a lifeline system of possible future earthquakes. The results are used to plan mitigation measures and to strengthen the structures where necessary. Instead, after an earthquake public authorities need mathematical models that compute: the damage caused by the earthquake to the individual vulnerable components and links, and the global behavior of the lifeline system. In this study, a framework that was developed and used for prediction purpose is modified to assess the consequences of an earthquake in quasi real-time after such earthquake happened. This is possible because nowadays entire seismic regions are instrumented with tight networks of strong motion stations, which provide and broadcast accurate intensity measure maps of the event to the public within minutes. The framework uses the broadcasted map and calculates the damage to the lifeline system and its component in quasi real-time. The results give the authorities the most likely status of the system. This helps emergency personnel to deal with the damage and to prioritize visual inspections and repairs. A highway transportation network is used as a test bed but any lifeline system can be analyzed.

Evaluating the Efficiency of Models for Predicting Seismic Building Damage (지진으로 인한 건물 손상 예측 모델의 효율성 분석)

  • Chae Song Hwa;Yujin Lim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.217-220
    • /
    • 2024
  • Predicting earthquake occurrences accurately is challenging, and preparing all buildings with seismic design for such random events is a difficult task. Analyzing building features to predict potential damage and reinforcing vulnerabilities based on this analysis can minimize damages even in buildings without seismic design. Therefore, research analyzing the efficiency of building damage prediction models is essential. In this paper, we compare the accuracy of earthquake damage prediction models using machine learning classification algorithms, including Random Forest, Extreme Gradient Boosting, LightGBM, and CatBoost, utilizing data from buildings damaged during the 2015 Nepal earthquake.

Embedment of structural monitoring algorithms in a wireless sensing unit

  • Lynch, Jerome Peter;Sundararajan, Arvind;Law, Kincho H.;Kiremidjian, Anne S.;Kenny, Thomas;Carryer, Ed
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.285-297
    • /
    • 2003
  • Complementing recent advances made in the field of structural health monitoring and damage detection, the concept of a wireless sensing network with distributed computational power is proposed. The fundamental building block of the proposed sensing network is a wireless sensing unit capable of acquiring measurement data, interrogating the data and transmitting the data in real time. The computational core of a prototype wireless sensing unit can potentially be utilized for execution of embedded engineering analyses such as damage detection and system identification. To illustrate the computational capabilities of the proposed wireless sensing unit, the fast Fourier transform and auto-regressive time-series modeling are locally executed by the unit. Fast Fourier transforms and auto-regressive models are two important techniques that have been previously used for the identification of damage in structural systems. Their embedment illustrates the computational capabilities of the prototype wireless sensing unit and suggests strong potential for unit installation in automated structural health monitoring systems.