• Title/Summary/Keyword: Earthquake Response Analysis

Search Result 1,373, Processing Time 0.03 seconds

Earthquake Response Analysis through a Fundamental Solution to Multilayered Half-Planes (다층반무한 기본해를 이용한 지진응답해석)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.128-135
    • /
    • 1997
  • The indirect boundary integral equation is formulated to analyze the behavior of a cavity in a multilayered half-plane subjected to earthquake waves. This formulation uses the fundamental solutions that are numerically calculated by the generalized transmission and reflection coefficient method. The free surface of the cavity without external excitation influences the behavior of the half-plane. Consequently this analysis adds the consideration of scattering-field into the analysis and the total motion field of the cavity is decomposed into the free-field and scattering-field motions. The free-field motion is obtained from the modification of the transmission and reflection coefficient method. The scattering-field motion is calculated is calculated by the indirect boundary value problem which has the ficticious boundaries and sources. In this study, P wave, SV wave, SH wave, and Rayleigh wave are analyzed respectively.

  • PDF

Dynamic Analysis of the Steel Jacket under Wave Force and Earthquake Force (파랑하중 및 지진하중을 받는 Steel Jacket의 동적해석)

  • 김문영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.284-291
    • /
    • 1999
  • The reliability analysis is of great importance in their design since offshore towers are high-cost and high-risk structures. The design of platforms in the marine environment depends on results of the dynamic behavior of the structure during earthquakes and storm wave conditions. this paper presents results of an analytical study on evaluating dynamic response of steel jacket modelled by space frame elements. program $\boxDr$OFSPC$\boxUl$for the linear and nonlinear dynamic analysis of steel jacket platform has been developed using FORTRAN 90 programing language through the present study. Free vibration and dynamic behavior of steel jackets under regular and irregular wave and earthquake force are investigated using this program

  • PDF

Study on Seismic Performance Evaluation and Verification of Seismic Safety for Power Cable Tunnels (개착식 전력구의 내진성능 평가 및 내진 안전성 검증)

  • Hwang, Kyeong-min;Chun, Nak-hyun;Chung, Gil-young;Park, Kyung-sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.439-445
    • /
    • 2020
  • In this paper, the seismic performance evaluation was performed on 100 existing open-cut power cable tunnels, including ones that did not consider seismic design, in order to verify that the government's demand level (seismic special grade, 0.22 g). The results of the seismic performance evaluation show that most of the tunnels have seismic performance of 0.3 to 1 g, satisfying the level of the seismic special grade and securing the seismic safety. Meanwhile, the earthquake response analysis and structural test were performed to verify the validity of the method and the results of the seismic performance evaluation of the tunnels by the response displacement method, and to verify their seismic safety. As a result, the relative displacement due to the response displacement method under the 0.22 g earthquake was conservative than the results of the earthquake response analysis, and the results of load-displacement curves and response modification coefficient calculation by real scale structural tests showed the safety of the tunnels.

Seismic Fragility Analysis of Equipment Considering the Inelastic Energy Absorption Factor of Weld Anchorage for Seismic Characteristics in Korea (국내 지진동 특성에 대한 기기 용접 정착부의 비탄성에너지 흡수계수를 고려한 지진취약도 평가)

  • Eem, Seunghyun;Kim, Gungyu;Choi, In-Kil;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.

Seismic Response Investigation of Traffic Signal-Supporting Structures Including Soil-Foundation Effects (지반-기초 영향을 고려한 교통신호등주의 지진응답 분석)

  • Kim, Taehyeon;Jeon, Jong-Su;Roh, Hwasung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.237-244
    • /
    • 2023
  • This study analyzes the seismic response of traffic light poles, considering soil-foundation effects through nonlinear static and time history analyses. Two poles are investigated, uni-directional and bi-directional, each with 9 m mast arms. Finite element models incorporate the poles, soil, and concrete foundations for analysis. Results show that the initial stiffness of the traffic light poles decreases by approximately 38% due to soil effects, and the drift ratio at which their nonlinear behavior occurs is 77% of scenarios without considering soil effects. The maximum acceleration response increases by about 82% for uni-directional poles and 73% for bi-directional poles, while displacement response increases by approximately 10% for uni-directional and 16% for bi-directional poles when considering soil-foundation effects. Additionally, increasing ground motion intensity reduces soil restraints, making significant rotational displacement the dominant response mechanism over flexural displacement for the traffic light poles. These findings underscore the importance of considering soil-foundation interactions in analyzing the seismic behavior of traffic light poles and provide valuable insights to enhance their seismic resilience and safety.

Determination of critical excitation in seismic analysis of structures

  • Kamgar, Reza;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.875-891
    • /
    • 2015
  • Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

Analysis of Amplification Factor Spectrum Using Strong Ground Motions Compatible to the Domestic Seismotectonic Characteristics (유사 강지진동을 이용한 수평 및 수직지반응답의 Amplification Factor 스펙트럼 분석)

  • 김준경;박창업;조봉곤;지헌철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.25-29
    • /
    • 1997
  • Amplication factor spectrum, using the observed strong ground motions database, has been obtained and compared with Standard Response Spectrum. The observed ground motions from the Miramichi, Nohanni, Sagueray and New Madrid Earthquake (19 vertical components, 36 horizontal components), which are estimated to represent domestic seismotectonic characteristics such as seismic sources, attenuation, and site effect, are used for the analysis of amplification factor spectrum. Amplication factors have been calculated by comparing the observed peak ground motions with results form responses to the observed horizontal and vertical ground motions. The comparison shows that the amplification factors resultant from this study exceed those of Standard Response Spectrum of relatively higher frequencies. The result implles that the characteristics of the seismic strong ground motion, which may represent the domestic seismotectonic characteristics differ from of standard Response Spectrum, especillay of higher frequencies.

  • PDF

Proposal and Implementation of Emergency Response System of Gas Shut-off in Earthquake (지진시 도시가스 공급정지를 위한 긴급대응시스템의 제안 및 적용)

  • Jung, Hyo-Soon;Kim, Ick-Hyun;Lee, Jong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.25-33
    • /
    • 2008
  • Fires that result from the excessive leakage of gas due to earthquakes cause enormous loss of property as well as numerous human casualties. To prevent such disasters, an emergency gas shut-off system is considered to be one of the effective and rational methods. Considering the seismicity, the earthquake frequency and the gas-supply system of Korea, mass gas shut-off by a gas company is determined to be more cost-effective than individual gas shut-off by customers. In this study, an emergency response system was proposed that would shut off the gas supply immediately. Two different reference seismicities were proposed, to specify rapid response according to the measured seismicity. The gas supply area was divided into several gas shut-off blocks in order to facilitate the shut-off of gas supply in damaged blocks. This proposed system was implemented in the actual gas supply area with reference seismicities on the basis of seismic damage analysis.

Investigation into the Input Earthquake Motions and Properties for Round Robin Test on Ground Response Analysis (지반 응답 해석 Round Robin Test의 입력 지진파 및 물성에 관한 고찰)

  • Sun, Chang-Guk;Han, Jin-Tae;Choi, Jung-In;Kim, Ki-Seog;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.266-292
    • /
    • 2007
  • Round Robin Test (RRT) on ground response analyses was conducted for three sites in Korea based on several site investigation data, which include borehole logs with the N values from standard penetration test (SPT) for all three sites and additionally cone tip resistance profiles for two sites. Three input earthquake motions together with the site investigation data were provided for the RRT. A total of 12 teams participating in this RRT presented the results of ground response analyses using equivalent-linear and/or nonlinear method. Each team determined input geotechnical properties by using empirical relationships and literatures based on own judgment, with the exception of the input motions. Herein, the characteristics of input motions were compared in terms of the frequency and period, and the selection of the depth to bedrock, on which the motions is impinged, was discussed considering geologic conditions in Korea. Furthermore, a variety of geotechnical properties such as shear wave velocity profiles and soil nonlinear curves were investigated with the input properties used in this RRT.

  • PDF

Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings (고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석)

  • Yoo, Bong;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF