• Title/Summary/Keyword: Earthquake Damage Estimation System

Search Result 38, Processing Time 0.019 seconds

Development of Earthquake Damage Estimation System and its Result Transmission by Engineering Test Satellite for Supporting Emergency

  • Jeong, Byeong-Pyo;Hosokawa, Masafumi;Takizawa, Osamu
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.12-19
    • /
    • 2011
  • Drawing on its extensive experience with natural disasters, Japan has been dispatching Japan Disaster Relief (JDR) team to disaster-stricken countries to provide specialist assistance in rescue and medical operations. The JDR team has assisted in the wake of disasters including the 2004 Indian Ocean Earthquake and the 2008 Sichuan Earthquake in China. Information about the affected area is essential for a rapid disaster response. However, it can be difficult to gather information on damages in the immediate post-disaster period. To help overcome this problem, we have built on an Earthquake Damage Estimation System. This system makes it possible to produce distributions of the earthquake's seismic intensity and structural damage based on pre-calculated data such as landform and site amplification factors for Peak Ground Velocity, which are estimated from a Digital Elevation Model, as well as population distribution. The estimation result can be shared with the JDR team and with other international organizations through communications satellite or the Internet, enabling more effective rapid relief operations.

  • PDF

A Study on Earthquke Damage Estimation of Non Precede Designed Reinforced Concrete Apartment in Korea (국내 비내진 설계 철근콘크리트 아파트에 대한 지진피해 예측 연구)

  • Kwon, Ki-Hyuk;Ko, Yong-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.95-105
    • /
    • 2005
  • Korea is located away from plate boundaries which are not safe from earthquakes. However, having witnessed the large-scale earthquake in the Tangshan region in 1976 deemed as a safe plate, it should not be assured that Korea is absolutely safe from earthquakes. In addition, many seismologists have claimed that there indeed is a high possibility of earthquakes above mid scale that would occur in Korea. Because it is impossible to prevent earthquake, studies on seismic design and earthquake disaster control system are widely being conducted. However, studies on early response to earthquakes or recovery process are still very limited, and only a few studies for establishing earthquake damage evaluation system are being conducted. Thus, this study aimed to present essential data for establishing earthquake damage evaluation system that takes into account the real situation of structures in Korea. In this study, a nonseimically reinforced concrete apartment structure in Gangnamgu was selected as an standard type of such structures and its earthquake damage was estimated. The result of damage evaluation based on the derivation of vulnerability function and realtive story displacement was compared to that abtained using HAZUS Program Vulnerability Function.

A Study on the Deduction of performance Point of Nonseismically Designed Reinforced Concrete Apartment (비내진 설계된 철근콘크리트 아파트의 성능점 도출에 관한 연구)

  • Kwon, Ki-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.85-93
    • /
    • 2005
  • It has been commonly assumed that during the 21st century, the korean peninsula may suffer huge earthquake damage to people, society, and economic system. The recent report of "Seoul Earthquake Response model development" conducted by the city of Seoul indicated that a magnitude 6.3 earthquake possibly hit Seoul, the capital of Korea. However, due to the insufficient amount of study on seismic performance of structures reflecting the various types of element peculiar to Korea application of the currently available earthquake damage evaluation methods has limitations. In order to conduct various studies on seismic hazards that are suitable for the actual conditions in Korea, therefore, fundamental studies first have to be properly conducted. The purpose of this study is to serve as the basis of establishing a reliable earthquake damage estimation system, and to provide essential data for the seismic damage evaluation of nonseismically reinforced concrete apartment structures. In this study, a standard type of nonseismically reinforced concrete apartments has been determined based on an extensive survey and careful review of such structures in Korea, and their performance level on seismic loading has been estimated.

Performance-based earthquake engineering methodology for seismic analysis of nuclear cable tray system

  • Huang, Baofeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2396-2406
    • /
    • 2021
  • The Pacific Earthquake Engineering Research (PEER) Center has been developing a performance-based earthquake engineering (PBEE) methodology, which is based on explicit determination of performance, e.g., monetary losses, in a probabilistic manner where uncertainties in earthquake ground motion, structural response, damage estimation, and losses are explicitly considered. To carry out the PEER PBEE procedure for a component of the nuclear power plant (NPP) such as the cable tray system, hazard curve and spectra were defined for two hazard levels of the ground motions, namely, operation basis earthquake, and safe shutdown earthquake. Accordingly, two sets of spectral compatible ground motions were selected for dynamic analysis of the cable tray system. In general, the PBEE analysis of the cable tray in NPP was introduced where the resulting floor motions from the time history analysis (THA) of the NPP structure should be used as the input motion to the cable tray. However, for simplicity, a finite element model of the cable tray was developed for THA under the effect of the selected ground motions. Based on the structural analysis results, fragility curves were generated in terms of specific engineering demand parameters. Loss analysis was performed considering monetary losses corresponding to the predefined damage states. Then, overall losses were evaluated for different damage groups using the PEER PBEE methodology.

Seismic Fragility Function for Unreinforced Masonry Buildings in Korea (국내 무보강 조적조 건물의 지진취약도함수)

  • Ahn, Sook-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.293-303
    • /
    • 2021
  • Seismic fragility functions for unreinforced masonry buildings were derived based on the incremental dynamic analysis of eight representative inelastic numerical models for application to Korea's earthquake damage estimation system. The effects of panel zones formed between piers and spandrels around openings were taken into account explicitly or implicitly regarding stiffness and inelastic deformation capacity. The site response of ground motion records measured at the rock site was used as input ground motion. Limit states were proposed based on the fraction of structural components that do not meet the required performance from the nonlinear static analysis of each model. In addition to the randomness of ground motion considered in the incremental dynamic analysis explicitly, supplementary standard deviation due to uncertainty that was not reflected in the fragility assessment procedure was added. The proposed seismic fragility functions were verified by applying them to the damage estimation of masonry buildings located around the epicenter of the 2017 Pohang earthquake and comparing the result with actual damage statistics.

Development of seismic fragility curves for high-speed railway system using earthquake case histories

  • Yang, Seunghoon;Kwak, Dongyoup;Kishida, Tadahiro
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • Investigating damage potential of the railway infrastructure requires either large amount of case histories or in-depth numerical analyses, or both for which large amounts of effort and time are necessary to accomplish thoroughly. Rather than performing comprehensive studies for each damage case, in this study we collect and analyze a case history of the high-speed railway system damaged by the 2004 M6.6 Niigata Chuetsu earthquake for the development of the seismic fragility curve. The development processes are: 1) slice the railway system as 200 m segments and assigned damage levels and intensity measures (IMs) to each segment; 2) calculate probability of damage for a given IM; 3) estimate fragility curves using the maximum likelihood estimation regression method. Among IMs considered for fragility curves, spectral acceleration at 3 second period has the most prediction power for the probability of damage occurrence. Also, viaduct-type structure provides less scattered probability data points resulting in the best-fitted fragility curve, but for the tunnel-type structure data are poorly scattered for which fragility curve fitted is not meaningful. For validation purpose fragility curves developed are applied to the 2016 M7.0 Kumamoto earthquake case history by which another high-speed railway system was damaged. The number of actual damaged segments by the 2016 event is 25, and the number of equivalent damaged segments predicted using fragility curve is 22.21. Both numbers are very similar indicating that the developed fragility curve fits well to the Kumamoto region. Comparing with railway fragility curves from HAZUS, we found that HAZUS fragility curves are more conservative.

Structural Joint Damage Assessment using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.131-138
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks. The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Loss Estimation of Steel Pipeline Damage in Los Angeles Using GIS (GIS를 이용한 로스엔젤레스에 매설된 강관 손상 평가)

  • Jeon, Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.47-58
    • /
    • 2004
  • Steel Pipelines were located in hillside and mountain areas where landslides occurred during the Northridge earthquake. This paper describes the investigations that were performed to identify and locate the different types of steel pipeline construction in the system using GIS (Geographical Information System). The paper explores the damage correlations of steel pipelines with PGV (peak ground velocity) and investigates the areas subjected to the landslide effects during the Northridge earthquake. One noticeable finding is that the repair rates for steel distribution pipelines after the Northridge earthquake are higher than those of CI (cast iron) pipelines. The relatively high susceptibility of steel piping to damage during the Northridge earthquake may be explained in part by utility practices, such as using steel pipe for the highest internal pressures, and increased susceptibility to corrosion also appears to play a role in steel pipeline performance.

Damage Estimation and LCC Optimal Design of Seismic Isolated Bridges considering nonlinearities of Pier and Isolator (교각 및 지진격리장치의 비선형성을 고려한 지진격리교량의 손상평가 및 LCC 최적설계)

  • 고현무;함대기;신정환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.344-351
    • /
    • 2003
  • In order to consider the characteristics of nonlinear dynamic responses of seismic isolated bridges reasonably, piers and isolators are modeled as a 2-DOF bilinear system. Then nonlinear time-history earthquake response analysis is accomplished many artificial input ground motions which were generated to reflect the characteristics of earthquakes. Damage probabilities and failure probabilities of each structural elements of the brides are calculated by using Monte-Carlo simulation method. Based on LCC evaluation considering various cost items of direct/indirect damage costs, the optimal design method of seismic isolated bridges is proposed. By using a sensitivity analysis about the design variables and a cost effectiveness evaluation in the viewpoint of LCC, the validity and the adequacy of proposed optimal design method are verified.

  • PDF

Dynamic Behavior of Buried Pipelines Constructed by Domestic and USA Specifications (국내 및 미국 시방서에 따라 시공된 지중매설관의 동적거동)

  • Jeon, Sang-Soo;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • Lifeline Damages induced by earthquake loading brings not only a structure damage but the communication problems by the interruption of various energy utilities such as electric power, gas, and water resources. Earthquake loss estimation systems in USA and Japan, called as HAZUS (Hazard in US) and HERAS (Hazards Estimation and Restoration Aid System), respectively, have been established for the purpose of efficient responding to the earthquake hazard. Sufficient damage records are required to establish these systems. However, there are insufficient data set of damage records obtained from previous earthquakes in Korea. In this study, according to the construction specifications of the pipelines in both Korea and USA, the behavior of both ductile and brittle pipelines embedded in dense sand overlying various soils, such as clay, sand, and gravel were examined with respect to the pipeline characteristics under various earthquake loadings. The applicability of pipeline damage prediction used in HAZUS program to Korea has been investigated.