• Title/Summary/Keyword: Earthquake Characteristics

Search Result 1,219, Processing Time 0.027 seconds

3-Dimensional Inelastic Behavior of Standard School Building with Various Hysteresis Models (표준학교건물의 3차원 비탄성거동에 대한 이력모델의 영향)

  • Yoon, Tae Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2917-2923
    • /
    • 2015
  • The three dimensional inelastic response characteristics of the standard school buildings depending on hysteresis models are reviewed. Three artificial earthquake records in accordance with KBC(Korea Building Code) are used and the inelastic response characteristics such as story shear force, story drift ratio, story displacement, hinge distribution state are reviewed with four hysteresis models. As results, story shear force is increased by maximum 27% and story drift ratio is increased by maximum 30% according to hysteresis models. Modified Takeda Model shows maximum story shear and story drift raio in longitudinal and short direction, expecting higher safety. Story shear shows minimum value with Clough Model in both directions and story drift ratio shows minimum with Takeda model in longitudinal and with Clough model in short direction, so these models are expected to decrease the safety ratio.

Liquifaction Characteristics of Saemangeum Dredged Sand Depending on Relative Density (상대밀도의 변화에 따른 새만금준설토의 액상화 특성)

  • Kim, Yoo-Seong;Seo, Se-Gwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • In reclaimed loose sandy layer with dredged soil, liquefaction by the small scale earthquake coud be occurred easily. A study has been carried out to investigate the Liquefaction characteristic on Saemangeum dredged sandy soil, and compared with other results from the literature investigation. A series of undrained cyclic triaxial compression tests were performed on dredged sandy soil of Seamangeum area. The tests were performed at the three different initial relative densities(namely 30%, 50%, 70%), different cyclic stress ratio and different consolidation stress condition. The results of this study showed that cyclic stresses (${\sigma}_d$) increased linearly with increase of consolidation ratio, but the stress ratios (${\sigma}_d/2{\sigma}^{\prime}{_c}$) were almost same. The stress ratios were increased almost linearly with increase of relative density. Compared with other sandy soil, Saemangeum dredged sandy soil showed relatively weak liquifaction characteristics.

  • PDF

GFRP retrofitting effect on the dynamic characteristics of model steel structure

  • Tuhta, Sertac
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.223-231
    • /
    • 2018
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Columns of the model steel structure are then retrofitted by using GFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of GFRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain Decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of GFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 33.916% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

STUDIES ON THE CHARACTERISTICS OF STONE STRUCTURES BY GEOTECHNICAL AND DYNAMIC STRUCTURAL ENGINEERINGS (석조구조물의 효율적 유지관리를 위한 지질공학적 및 구조동역학적 특성연구)

  • HoWoongShon;SungMinLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.277-294
    • /
    • 2003
  • Structures show the phenomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural property, Chum-Sung-Dae, located in Kyeongjucity, Korea. It was built about 1,300 years ago, and has undergone deformation and ground-subsidence with time-lapse. Non-destructive evaluation techniques were applied to the Chum-Sung-Dae, to protect it from survey. Because of this reason, 3D precise laser scanning surveying system was applied to measure the exact size of Chum-Sung-Dae, displacement and declining angles. Geophysical exploration also was applied to study the subsurface distribution of geotechnical parameters or physical properties. Natural frequencies were measured from real and model of Chum-Sung-Dae to study the dynamic characteristics of vibration and/or earthquake load and stiffness of structures.

  • PDF

Generation of Synthetic Ground Motion in Time Domain (시간영역 인공지진파 생성)

  • Kim, Hyun-Kwan;Park, Du-Hee;Jeong, Chang-Gyun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • The importance of seismic design is greatly emphasized recently in Korea, resulting in an increase in the number of dynamic analysis being performed. One of the most important input parameters for the dynamic seismic analysis is input ground motion. However, it is common practice to use recorded motions from U.S. or Japan without considering the seismic environment of Korea or synthetic motions generated in the frequency domain. The recorded motions are not suitable for the seismic environment of Korea since the variation in the duration and energy with the earthquake magnitude cannot be considered. The artificial motions generated in frequency domain used to generated design response spectrum compatible ground motion has the problem of generating motions that have different frequency characteristics compared to real recordings. In this study, an algorithm that generates target response spectrum compatible ground motions in time domain is used to generate a suite of input ground motions. The generated motions are shown to preserve the non-stationary characteristics of the real ground motion and at the same, almost perfectly match the design response spectrum.

Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure (지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법)

  • Lee, Do-Geun;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

Dynamic Active Earth Pressure of Gabion-Geotextile Bag Retaining Wall System Using Large Scale Shaking Table Test (진동대 실험을 이용한 게비온-식생토낭 옹벽 시스템의 동적주동토압 산정)

  • Kim, Da Been;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.15-26
    • /
    • 2019
  • This study was conducted to characterize shearing strength of geotextile bag, connecting materials and gabion. A largescale shaking take tests were conducted to assess kinetic characteristics of gabion-geotextile bag retaining wall. Based on the results of large-scale shaking table test, dynamic characteristics of gabion-geotextile bag retaining wall structure against acceleration, displacement, and earth pressure were also analyzed. The increments of dynamic active earth pressure were determined to be (0.376-0.377)H at 1:0.3 slope and $(0.154-0.44)g_n$ earthquake acceleration, and (0.389-0.393)H at 1:1 slope, suggesting that the increments tend to rise as the slope decreases.

Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model

  • Moradloo, Javad;Naserasadi, Kiarash;Zamani, Habib
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.747-760
    • /
    • 2018
  • In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption. Two damage indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis than tensional damage index.

Identification of Dynamic Characteristics and Numerical Analysis of Ceiling System Considering Collision Adjacent Structures (천장시스템의 동특성 식별 및 인접 구조물과의 충돌을 고려한 동적응답해석)

  • Jeon, Min-Jun;Ju, Bo-Geun;Cho, Bong-Ho;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.205-213
    • /
    • 2019
  • In the Pohang Earthquake in 2017, considerable damage to non-structural elements, such as ceiling systems, exterior finishes, and curtain walls, was reported; thus, the seismic designs of non-structural elements are important. In this study, the modal characteristics of a ceiling system were investigated through the impact hammer test. The frequency and damping ratio according to the length of the hanger bolt were identified. In addition, collision experiments were conducted to obtain the impact duration for exactly considering the impact effects of the ceiling against a wall or other adjacent elements. Based on the identified dynamics and impact duration of the ceiling system, the seismic responses of the ceiling system were obtained numerically in case of collision. Numerical simulation results show that the impact load tends to increase with the clearance between the ceiling and adjacent elements, and is not correlated with the length of the hanger bolt.