• Title/Summary/Keyword: Earthquake Characteristics

Search Result 1,219, Processing Time 0.021 seconds

Influence of Phase Angle Characteristics to Energy Input of Earthquake Ground Motions (지진동의 입력에너지에 대한 위상각 차이의 영향)

  • Woo, Woon-Taek;Park, Tae-Won;Jung, Ran
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.243-249
    • /
    • 2003
  • The characteristics of harmonic phase angles and phase angle differences contained in earthquake ground motions such as El Centre 1530 NS, Taftl 1952 NS, Hachinohe 1968 NS and Mexico 1985 are figured, which have been mostly overlooked in contrast with the importance placed on harmonic amplitudes. And, energy input spectrum of structures excited by such an earthquake motion is expressed with smoothed Fourier amplitude spectrum. In dynamic response analysis, there must be earthquake ground accelerations which contain the phase angle, the phase angle difference and energy input spectrum characteristics of the zone considered to be constructed building structures. To make clear the importance of phase angle differences, 4-earthquake ground motions are normalized by 200 gal and energy input spectrum characteristics of normalized 4-earthquake ground motions are compared.

  • PDF

A Study on the Presumption for Attenuation Relation by MT. O-dae earthquake data in Korea (오대산 지진자료에 의한 거리감쇠식 추정에 관한 연구)

  • Kwon, Ki-Hyuk;Hwang, Wan-Seon;Yu, Hye-Ran
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.33-36
    • /
    • 2008
  • In Korean Building Code 2005(KBC-2005), the Seismic Zone Factor is regulated by separating the seismic zone into two part. This seismic zone factor is not matched to regional seismic characteristics of our country because the factor is based on International Building Code 2000 (IBC-2000) of USA. This study inquiry for having a sufficient grasp of the seismic characteristics of south Korea region and appling for the seismic cope plan. We have collected and analyzed earthquake record happened in domestic region. There are two kinds of earthquake record. One is Historical earthquake data, another is Instrumental earthquake data. I used Instrumental earthquake record data which reliance is higher than historical earthquake data for proposing attenuation formulas by analyzing a correlation the epicenter and the distance.

  • PDF

Simulation of Artificial Earthquake Wave Compatible with Seismic Design Spectrum and Its Response Characteristics (내진 설계용 스펙트럼에 적합한 인공지진파의 작성과 응답 특성)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.141-148
    • /
    • 2006
  • This study describes a generation of artificial earthquake wane compatible with seismic design spectrum. In seismic response analysis of building structures, the input ground accelerations have considerable effect on dynamic characteristics of structures. Therefore, it is important to properly select input ground motions for seismic response analysis. In this paper, the artificial earthquake wave are generated according to previously recorded earthquake waves in past earthquake events. The artificial wave have identical phase angles to the recorded earthquake wane, and their overall response spectra are compatible with seismic design spectrum with 5% of critical viscous damping. Each simulated earthquake wave has a identical phase angles to the original recorded ground acceleration, and match to design response spectra in the range of period from 0.02 to 10.0 seconds. It is concluded that the artificial earthquake waves simulated in this paper ate applicable as input ground motions for a seismic response analysis of building structures.

  • PDF

Evaluation of Liquefaction Resistance Strength based on the Cyclic Triaxial Tests using Real Earthquake Loading (실지진하중의 진동삼축시험에 기초한 액상화 저항강도 산정)

  • 심재욱;김수일;최재순;박근보
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.67-74
    • /
    • 2002
  • An experimental assessment on the dynamic behavior of saturated sand which can consider the irregular characteristics of earthquakes was proposed. The equivalent uniform stress concept presented by Seed and Idriss has been applied to evaluate the liquefaction resistance strength to simplify earthquake loading. However, it was known that the liquefaction resistance strength of soil based on the equivalent uniform stress concept can't exactly mirror the dynamic characteristics of the irregular earthquake motion. In this study, estimation of the criterion of the liquefaction resistance strength was determined by applying real earthquake loading to the cyclic triaxial test. From the test results, relationships between excess pore water pressure and the earthquake characteristics such as magnitude or duration were determined. Magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were also proposed.

  • PDF

Characteristics of Artificial Earthquake using Recorded Earthquake Data in Korea (국내 지진데이터를 이용한 인공지진가속도 특성)

  • Woo, Woon-Taek;Park, Tae-Won;Jung, Ran
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.479-486
    • /
    • 2003
  • The characteristics of harmonic phase angles and phase angle differences contained in earthquake ground motions such as El Centre 1940 NS, Taft1 1952 NS, Hachinohe 1968 NS and Mexico 1985 are figured, which have been mostly overlooked in contrast with the importance placed on harmonic amplitudes. Recently, performance based design method is used for seismic design and seismic retrofitting, which needs nonlinear response analysis, there must be earthquake ground accelerations which contain the phase angle, the phase angle difference and energy input spectrum characteristics of the zone considered to be constructed building structures. To make clear the importance of phase angle differences, responses of 4 recorded earthquake ground motions, 4-earthquake ground motions normalized by 110 gal and 4 artificial earthquake motions compatible to the seismic building code of Korea are compared.

  • PDF

Seismic performance assessment of NPP concrete containments considering recent ground motions in South Korea

  • Kim, Chanyoung;Cha, Eun Jeong;Shin, Myoungsu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.386-400
    • /
    • 2022
  • Seismic fragility analysis, a part of seismic probabilistic risk assessment (SPRA), is commonly used to establish the relationship between a representative property of earthquakes and the failure probability of a structure, component, or system. Current guidelines on the SPRA of nuclear power plants (NPPs) used worldwide mainly reflect the earthquake characteristics of the western United States. However, different earthquake characteristics may have a significant impact on the seismic fragility of a structure. Given the concern, this study aimed to investigate the effects of earthquake characteristics on the seismic fragility of concrete containments housing the OPR-1000 reactor. Earthquake time histories were created from 30 ground motions (including those of the 2016 Gyeongju earthquake) by spectral matching to the site-specific response spectrum of Hanbit nuclear power plants in South Korea. Fragility curves of the containment structure were determined under the linear response history analysis using a lumped-mass stick model and 30 ground motions, and were compared in terms of earthquake characteristics. The results showed that the median capacity and high confidence of low probability of failure (HCLPF) tended to highly depend on the sustained maximum acceleration (SMA), and increase when using the time histories which have lower SMA compared with the others.

Ambient vibration based structural evaluation of reinforced concrete building model

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.335-350
    • /
    • 2018
  • This paper presents numerical modelling, modal testing, finite element model updating, linear and nonlinear earthquake behavior of a reinforced concrete building model. A 1/2 geometrically scale, two-storey, reinforced concrete frame model with raft base were constructed, tested and analyzed. Modal testing on the model using ambient vibrations is performed to illustrate the dynamic characteristics experimentally. Finite element model of the structure is developed by ANSYS software and dynamic characteristics such as natural frequencies, mode shapes and damping ratios are calculated numerically. The enhanced frequency domain decomposition method and the stochastic subspace identification method are used for identifying dynamic characteristics experimentally and such values are used to update the finite element models. Different parameters of the model are calibrated using manual tuning process to minimize the differences between the numerically calculated and experimentally measured dynamic characteristics. The maximum difference between the measured and numerically calculated frequencies is reduced from 28.47% to 4.75% with the model updating. To determine the effects of the finite element model updating on the earthquake behavior, linear and nonlinear earthquake analyses are performed using 1992 Erzincan earthquake record, before and after model updating. After model updating, the maximum differences in the displacements and stresses were obtained as 29% and 25% for the linear earthquake analysis and 28% and 47% for the nonlinear earthquake analysis compared with that obtained from initial earthquake results before model updating. These differences state that finite element model updating provides a significant influence on linear and especially nonlinear earthquake behavior of buildings.

A Discussion on the Seismic Coefficient for Gravity Quay Wall Considering Frequency Characteristics of Input Earthquake (입력 지진의 주파수 특성을 고려한 중력식 안벽의 수평 지진계수에 대한 고찰)

  • Lee, Moon Gyo;Ha, Jeong Gon;Park, Heon Joon;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • Pseudo-static approach has been conventionally applied for the design of gravity type quay walls. In this method, seismic coefficient ($k_h$), expressed in terms of acceleration due to gravity, is used to convert the real dynamic behavior to an equivalent pseudo-static inertial force for seismic analysis and design. Therefore, the calculation of an appropriate $k_h$ considering frequency characteristics of input earthquake is critical for representing the real dynamic behavior. However, the definitions of $k_h$, which is used for simplified analysis in Korea, focuses only on convenience that is easy to use, and the frequency characteristics of input earthquake are not reflected in the $k_h$ definitions. This paper evaluates the influences of the frequency characteristics of input earthquake on $k_h$ by initially reviewing the $k_h$ definitions in the existing codes of Japan for port structures and then by performing a series of dynamic centrifuge tests on caisson gravity quay walls of different earthquake input motions (Ofunato, Hachinohe). A review of the existing codes and guidelines has shown that the $k_h$ values are differently estimated according to the frequency characteristics of input earthquake. On the other hand, based on the centrifuge tests, it was found that the permanent displacements of wall are more induced when long-period-dominant earthquake is applied.

Stress Drop Characteristics of the Tsunami Generating Earthquake (해일유발지진의 응력강하 특성)

  • Oh, Seok-Hoon;Youn, Yong-Hoon;Yang, Jun-Mo;Kim, Suek-Yung;Lee, Duk-Kee
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.704-710
    • /
    • 2003
  • A study for analysing the characteristics of the 'Tsunami Earthquake' and 'Tsunamigenic Earthquake' has been done in terms of stress drop and tectonic characteristics using previous studies on magnitude, moment, energy, and length of fault. The 'Tsunami Earthquake' seemed to occur mainly on the subduction environment with a very low stress drop of about 10 bars and a thrust dip angle comparing those of the 'Tsunamigenic Earthquake' or other earthquakes. Released energy to moment ratio of the 'Tsunami Earthquake' also seemed to be lower. Earthquakes which generated tsunami in the East Sea seemed to be 'Tsunamigenic Earthquake' with a stress drop of about 30${\sim}$50 bars, and an average energy to moment ratio. Hence, stress drop, energy to moment ratio, and thrust dip angle seem to be indicators of earthquakes that produce tsunamis.

Estimation of the Maximum Potential Earthquake from the Fault Parameters (단층요소로부터 최대 잠재지진 평가에 관해서)

  • 장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.33-40
    • /
    • 2000
  • The assessment of earthquake hazards involved consideration of earthquake magnitude, frequency, last movement and probability of occurrence. The appraisal of earthquake potential is feasible because historical data show a good correlation between earthquake size and the fault rupture parameters of length, displacement, and area. Additionally, the characteristics of fault behavior should be considered to evaluate the earthquake potential magnitude. In this study, in order to evaluate the earth quake potential by the fault behavioral patterns, based on the experimental background which the geometric characteristics of the individual domains, such as strike, width, fault tip patterns, and orientation of secondary shears reflect sliding behavioral patterns in each section, the straight sections of A, D and E domains were examined to the creeping section of stably sliding. In contrast, the curved section of B domain was examined to the locked section of stick-slip movement. These results of studies can be applied to evaluate the earthquake potential magnitude from the fault structural parameters.

  • PDF