• Title/Summary/Keyword: Earth system science education

Search Result 336, Processing Time 0.022 seconds

The Optimized Analysis Zone Districting Using Variogram in Urban Remote Sensing (도시원격탐사에서 베리오그램을 이용한 최적의 분석범위 구역화)

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.107-115
    • /
    • 2008
  • Recently, a considerable number of studies have been conducted on the high resolution imagery showing the boundaries of objects clearly. When urban areas are analyzed in detail using the high resolution imagery, the size of analyzed zone is apt to be decided arbitrarily. Sufficient prior information about study area makes the decision of analysis zone possible; otherwise, it is difficult to determine the optimized analysis zone using only satellite imagery. In this study, the variograms of artificial simple images are analyzed before applying to the real satellite images. As a result of the analysis of simple images, the sill has an effect on the density of objects and also the size of objects and spacing influence the range. The variograms of real satellite images are analyzed with reference to the result of model test and are applied to determining the optimized analysis zone. This study shows that variogram can be applied to determining effectively the optimized analysis zone in case of no prior information on study area; moreover it will be expected to be used for an index to express the characteristics of urban imagery as well as conventional kriging and simulation.

A Review on the Stratigraphy, Depositional Period, and Basin Evolution of the Bansong Group (반송층군의 층서, 퇴적시기, 분지 진화에 관한 고찰)

  • Younggi Choi;Seung-Ik Park;Taejin Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.385-396
    • /
    • 2023
  • The Mesozoic Bansong Group, distributed along the NE-SW thrust fault zone of the Okcheon Fold Belt in the Danyang-Yeongwol-Jeongseon areas, contains important information on the two Mosozoic orogenic cycles in the Koran Peninsula, the Permian-Triassic Songrim Orogeny and the Jurassic Daebo Orogeny. This study aims to review previous studies on the stratigraphy, depositional period, and basin evolution of the Bansong Group and to suggest future research directions. The perspective on the implication of the Bansong Group in the context of the tectonic evolution of the Korean Peninsula is largely divided into two points of view. The traditional view assumes that it was deposited as a product of the post-collisional Songrim Orogeny and then subsequently deformed by the Daebo Orogeny. This interpretation is based on the stratigraphic, paleontologic, and structural geologic research carried out in the Danyang Coalfield area. On the other hand, recent research regards the Bansong Group as a product of syn-orogenic sedimentation during the Daebo Orogeny. This alternative view is based on the zircon U-Pb ages of pyroclastic rocks distributed in the Yeongwol area and their structural position. However, both models cannot comprehensively explain the paleontological and geochronological data derived from Bansong Group sediments. This suggests the need for a new basin evolution model integrated from multidisciplinary data obtained through sedimentology, structural geology, geochronology, petrology, and geochemistry studies.

An Observational Study on the Change of Micro-meteorological Environment due to Deforestation (삼림파괴로 인한 미기후 환경변화에 관한 관측적 연구)

  • Lim, Jung-Sub;Lee, Bu-Yong;Kim, Hae-Dong;Kim, Hak-Yoon;Hwang, Soo-Jin
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.185-195
    • /
    • 2009
  • We investigated the change of several meteorological variables due to deforestation. We established two sets of automatic weather observation system: one on a hill where forest was destructed by lumbering (Point 1) and the other in a neighboring district (Point 2) of fairly preserved forest. The observations were continued for one year (2006. 12-2007. 12). In this study, we analysed the data observed for one week from the nea day after summertime rainfall. The results showed that the air temperatures of Point 1 were about $1.5^{\circ}C$ higher than those of Point 2 during the daytime. But there were small gaps between the two poults during the nighttime. The relative humidities also differed greatly between the two during the daytime. It was as high as about 10% at Point 2. The surface and underground (15 cm in depth) soil temperatures were also fealty different between the two points during the daytime. They were $3-10^{\circ}C$ higher at Point 2 than those of Point 1. And the gaps reduced drastically during the nighttime. The averaged soil moistures were 7.1% at Point 1 and 19.5% at Point 2 during the observation period, respectively. The differences of wind direction were small, but the wind speeds differed between the two points. The observed wind speeds during the observation period were roughly estimated to be about 0.5m/s at Point 1 and 0.3m/s at Point 2. The heat budget analysis was also performed based on the observation data.

A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia

  • Hakim, Wahyu Luqmanul;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1303-1322
    • /
    • 2020
  • Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.

Science Teachers' Diagnoses of Cooperative Learning in the Field (과학교사들이 진단한 과학과 협동학습의 실태)

  • Kwak, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.360-376
    • /
    • 2001
  • This qualitative research investigated in-service science teachers' perceptions about cooperative learning and their perceived barriers in implementing cooperative learning in their classrooms. The underlying premise for cooperative learning is founded in constructivist epistemology. Cooperative learning (CL) is presented as an alternative frame to the current educational system which emphasizes content memorization and individual student performance through competition. An in-depth interview was conducted with 18 in-service science teachers who enrolled in the first-class teacher certification program during 2001 summer vacation. These secondary school teachers's interview data were analyzed and categorized into three areas: teachers' definition of cooperative learning, issues with implementing cooperative learning in classrooms, and teachers' and students' responses towards cooperative learning. Each of these areas are further subdivided into 10 themes: teachers' perceived meaning of cooperative learning, the importance of talk in learning, when to use cooperative learning, how to end a cooperative class, how to group students for cooperative learning, obstacles to implementing cooperative learning, students' reactions to cooperative learning, teachers' reasons for choosing (not choosing) student-centered approaches to learning/teaching, characteristics of teachers who use cooperative learning methods, and teachers' reasons for resisting cooperative learning. Detailed descriptions of the teachers' responses and discussion on each category are provided. For the development and implementation of CL in more classrooms, there should be changes and supports in the following five areas: (1) teachers have to examine their pedagogical beliefs toward constructivist perspectives, (2) teacher (re)education programs have to provide teachers with cooperative learning opportunities in methods courses, (3) students' understanding of their changed roles (4) supports in light of curriculum materials and instructional resources, (5) supports in terms of facilities and administrators. It's important to remember that cooperative learning is not a panacea for all instructional problems. It's only one way of teaching and learning, useful for specific kinds of teaching goals and especially relevant for classrooms with a wide mix of student academic skills. Suggestions for further research are also provided.

  • PDF

Ground-based Observations of the Polar Region Space Environment at the Jang Bogo Station, Antarctica

  • Kwon, Hyuck-Jin;Lee, Changsup;Jee, Geonhwa;Ham, Young-Bae;Kim, Jeong-Han;Kim, Yong Ha;Kim, Khan-Hyuk;Wu, Qian;Bullett, Terence;Oh, Suyeon;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2018
  • Jang Bogo Station (JBS), the second Korean Antarctic research station, was established in Terra Nova Bay, Antarctica ($74.62^{\circ}S$ $164.22^{\circ}E$) in February 2014 in order to expand the Korea Polar Research Institute (KOPRI) research capabilities. One of the main research areas at JBS is space environmental research. The goal of the research is to better understand the general characteristics of the polar region ionosphere and thermosphere and their responses to solar wind and the magnetosphere. Ground-based observations at JBS for upper atmospheric wind and temperature measurements using the Fabry-Perot Interferometer (FPI) began in March 2014. Ionospheric radar (VIPIR) measurements have been collected since 2015 to monitor the state of the polar ionosphere for electron density height profiles, horizontal density gradients, and ion drifts. To investigate the magnetosphere and geomagnetic field variations, a search-coil magnetometer and vector magnetometer were installed in 2017 and 2018, respectively. Since JBS is positioned in an ideal location for auroral observations, we installed an auroral all-sky imager with a color sensor in January 2018 to study substorms as well as auroras. In addition to these observations, we are also operating a proton auroral imager, airglow imager, global positioning system total electron content (GPS TEC)/scintillation monitor, and neutron monitor in collaboration with other institutes. In this article, we briefly introduce the observational activities performed at JBS and the preliminary results of these observations.

A Study on the Importance and Improvement Direction of Science Communication by Analyzing Articles of the Super Blue Moon (슈퍼블루문 기사 내용분석을 통한 과학 커뮤니케이션의 중요성 및 개선방향 연구)

  • Ah-Chim Sul;Hyoungbum Kim;Yonggi Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.2
    • /
    • pp.86-101
    • /
    • 2024
  • The purpose of this study is to provide basic data on the importance of accurate scientific communication and the current status of popular astronomy based on science articles that occurred during the so-called Super Blue Moon astronomical phenomenon in August 2023. To this end, the subjects were divided into non-experts, quasi-experts, and experts based on the degree of knowledge of the astronomical universe to investigate the data interpretation ability of astronomical science information and to analyze the causes of errors in the interpretation process through in-depth interviews. We also investigated the favorability and reliability of research institutes that strive to provide scientific information and the media that strive to spread it and also investigated the changes in existing favorability and reliability when incorrect scientific information spreads, as in this case. Although there were differences in the interpretation of scientific information about the astronomical universe depending on the cognitive aspect, the influence of linguistic elements or literacy, which could be called communication, could not be ignored. In particular, it was confirmed that misconceptions inherent in the existing research subjects could be expressed, leading to errors in accurate information interpretation. In addition, after recognizing that errors were included in the spread of scientific information, the subjects' favorability toward research institutes and the media fell 12.30% and 17.58%, respectively, while reliability fell 19.40% for research institutes and 24.49% for media outlets. Regardless of the cause of the error, the importance of providing accurate scientific information is further emphasized, considering that the overall favorability and reliability of both research institutes and the media decline. In order for research institutes and media outlets to spread accurate scientific information about the astronomical universe based on the public's trust, it is necessary to establish a system that can accurately deliver error-free information generated by research institutes related to astronomical space to media or science communicators and to develop a system that quickly retrieves and corrects incorrect scientific information through continuous monitoring.

An Estimation of Concentration of Asian Dust (PM10) Using WRF-SMOKE-CMAQ (MADRID) During Springtime in the Korean Peninsula (WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Lee, Kang-Yeol
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.276-293
    • /
    • 2011
  • In this study a modeling system consisting of Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), the Community Multiscale Air Quality (CMAQ) model, and the CMAQ-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) model has been applied to estimate enhancements of $PM_{10}$ during Asian dust events in Korea. In particular, 5 experimental formulas were applied to the WRF-SMOKE-CMAQ (MADRID) model to estimate Asian dust emissions from source locations for major Asian dust events in China and Mongolia: the US Environmental Protection Agency (EPA) model, the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, and the Dust Entrainment and Deposition (DEAD) model, as well as formulas by Park and In (2003), and Wang et al. (2000). According to the weather map, backward trajectory and satellite image analyses, Asian dust is generated by a strong downwind associated with the upper trough from a stagnation wave due to development of the upper jet stream, and transport of Asian dust to Korea shows up behind a surface front related to the cut-off low (known as comma type cloud) in satellite images. In the WRF-SMOKE-CMAQ modeling to estimate the PM10 concentration, Wang et al.'s experimental formula was depicted well in the temporal and spatial distribution of Asian dusts, and the GOCART model was low in mean bias errors and root mean square errors. Also, in the vertical profile analysis of Asian dusts using Wang et al's experimental formula, strong Asian dust with a concentration of more than $800\;{\mu}g/m^3$ for the period of March 31 to April 1, 2007 was transported under the boundary layer (about 1 km high), and weak Asian dust with a concentration of less than $400\;{\mu}g/m^3$ for the period of 16-17 March 2009 was transported above the boundary layer (about 1-3 km high). Furthermore, the difference between the CMAQ model and the CMAQ-MADRID model for the period of March 31 to April 1, 2007, in terms of PM10 concentration, was seen to be large in the East Asia area: the CMAQ-MADRID model showed the concentration to be about $25\;{\mu}g/m^3$ higher than the CMAQ model. In addition, the $PM_{10}$ concentration removed by the cloud liquid phase mechanism within the CMAQ-MADRID model was shown in the maximum $15\;{\mu}g/m^3$ in the Eastern Asia area.

The Generation of Westerly Waves by Sobaek Mountains (소백산맥에 의한 서풍 파동 발생)

  • Kim, Jin wook;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.24-34
    • /
    • 2017
  • The westerly waves generation is described in the advanced earth science textbook used at high school as follows: as westerly wind approaches and blows over large mountains, the air flow shows wave motions in downwind side, which can be explained by the conservation of potential vorticity. However, there has been no case study showing the phenomena of the mesoscale westerly waves with observational data in the area of small mountains in Korea. And thus the wind speed and time persistency of westerly winds along with the width and length of mountains have never been studied to explain the generation of the westerly waves. As a first step, we assured the westerly waves generated in the downwind side of Sobaek mountains based on surface station wind data nearby. Furthermore, the critical or minimum wind velocity of the westerly wind over Sobaek mountains to generate the downwind wave were derived and calcuated tobe about $0.6m\;s^{-1}$ for Sobaek mountains, which means that the westerly waves could be generated in most cases of westerly blowing over the mountains. Using surface station data and 4-dimensional assimilation data of RDAPS (Regional Data Assimilation and Prediction System) provided by Korea Meteorological Agency, we also analyzed cases of westerly waves occurrence and life cycle in the downwind side of Sobaek mountains for a year of 2014. The westerly waves occurred in meso-${\beta}$ or -${\gamma}$ scales. The westerly waves generated by the mountains disappeared gradually with wind speed decreasing. The occurrence frequency of the vorticity with meso-${\beta}$ scale got to be higher when the stronger westerly wind blew. When we extended the spatial range of the analysis, phenomena of westerly waves were also observed in the downwind side of Yensan mountains in Northeastern China. Our current work will be a study material to help students understand the atmospheric phenomena perturbed by mountains.

Retrieval of Oceanic Skin Sea Surface Temperature using Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Radiance Measurements (적외선 라디오미터 관측 자료를 활용한 해양 피층 수온 산출)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • Sea surface temperature (SST), which plays an important role in climate change and global environmental change, can be divided into skin sea surface temperature (SSST) observed by satellite infrared sensors and the bulk temperature of sea water (BSST) measured by instruments. As sea surface temperature products distributed by many overseas institutions represent temperatures at different depths, it is essential to understand the relationship between the SSST and the BSST. In this study, we constructed an observation system of infrared radiometer onboard a marine research vessel for the first time in Korea to measure the SSST. The calibration coefficients were prepared by performing the calibration procedure of the radiometer device in the laboratory prior to the shipborne observation. A series of processes were applied to calculate the temperature of the layer of radiance emitted from the sea surface as well as that from the sky. The differences in skin-bulk temperatures were investigated quantitatively and the characteristics of the vertical structure of temperatures in the upper ocean were understood through comparison with Himawari-8 geostationary satellite SSTs. Comparison of the skin-bulk temperature differences illustrated overall differences of about 0.76℃ at Jangmok port in the southern coast and the offshore region of the eastern coast of the Korean Peninsula from 21 April to May 6, 2020. In addition, the root-mean-square error of the skin-bulk temperature differences showed daily variation from 0.6℃ to 0.9℃, with the largest difference of 0.83-0.89℃ at 1-3 KST during the daytime and the smallest difference of 0.59℃ at 15 KST. The bias also revealed clear diurnal variation at a range of 0.47-0.75℃. The difference between the observed skin sea surface temperature and the satellite sea surface temperature showed a mean square error of approximately 0.74℃ and a bias of 0.37℃. The analysis of this study confirmed the difference in the skin-bulk temperatures according to the observation depth. This suggests that further ocean shipborne infrared radiometer observations should be carried out continuously in the offshore regions to understand diurnal variation as well as seasonal variations of the skin-bulk SSTs and their relations to potential causes.