• Title/Summary/Keyword: Earth reinforcement

Search Result 240, Processing Time 0.023 seconds

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.

Behavior of Geosynthetic Reinforced Modular Block Walls under Sustained Loading using Reduced-Scale Model Test (축소모형실험에 의한 지속하중하에서의 보강토 옹벽의 거동특성 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Byun, Joseph;Kim, Young-Hoon;Han, Dae-Hui
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when used as part of permanent structures. In view of these concerns, time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained loads were investigated using reduced-scale model tests. The results indicated that a sustained load can yield appreciable magnitude of residual deformation, and that the magnitude of residual deformation depends on the loading characteristic as well as reinforcement stiffness.

  • PDF

Experimental Study for Determination of Horizontal Permeability with considering various Geocell Shapes (지오셀의 형상에 따른 수평투수계수 산정에 관한 실험적 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Kang, Hyoun-Hoi;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.285-292
    • /
    • 2010
  • Recently, it is difficult to find a good soil ground due to the shortage of land for new construction site. Because of this situation, the geosynthetics are commonly used for reinforcing the substructure of the soil ground, and hence improving the bearing capacity and reducing the settlement. The geocell is one of geosynthetics and is the advanced system of geogrid. It is the way to increase earth strength and bearing capacity by using three dimension type of geocomposite. In this paper, the Horizontal permeability was determined with considering various geocell shapes. The permeability test was performed by following method of ASTM D4716(87) and potential filling material for geocell was used. The bearing capacity mechanism which enhances the soil ground with evenly maintaining the degree of the compaction was also analyzed for geocell reinforced ground.

  • PDF

Evaluation of Effect for Connector System in Reinforced Earth Retaining Wall (보강토 옹벽에서 연결시스템의 영향성 평가)

  • Lee, Jun-Dae;Heo, Yol;Ahn, Kwang-Kuk;Lee, Yong-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, in order to evaluate the effect of two types of connector systems in reinforced retaining wall, the centrifugal tests for the conventional connector and new settlement connector system were performed. In the centrifugal tests, the aluminum plate for the face was used and the aluminum foil was used as a reinforcement. The granite soil was adopted as a fill. As a result, The settlement reinforced retaining wall reached to the failure at 80g-level. In contrast, the conventional reinforced retaining wall was collapsed at 69g-level. It means that the settlement reinforced retaining wall has the stronger stability than the conventional reinforced retaining wall. In addition, it was shown that the settlement connector system is more effective to release the stress concentration occurred at the face of reinforced retaining wall than the conventional connector system.

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

Ground stability analysis on the limestone region

  • Choi Sung O.;Kim Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.281-287
    • /
    • 2003
  • A Natural cavities were found at shallow depth during construction of a huge bridge in Moon-Kyung, Korea. The distribution patterns of cavities in the Moon-Kyung limestone were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map on this area. It suggested that there were three faults in this area, and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied firstly on the specific area that was selected by results from the geological survey. Many evidences for cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target area, which was focused by results from the electrical resistivity prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced. Based on the project result, finally, most of foundations for the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

  • PDF

Effectiveness of seismic repairing stages with CFRPs on the seismic performance of damaged RC frames

  • Duran, Burak;Tunaboyu, Onur;Kaplan, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.233-244
    • /
    • 2018
  • This study aims at evaluating the performance of repairing technique with CFRPs in recovering cyclic performance of damaged columns in flexure in terms of structural response parameters such as strength, dissipated energy, stiffness degradation. A 2/3 scaled substandard reinforced concrete frame was constructed to represent the substandard RC buildings especially in developing countries. These substandard buildings have several structural deficiencies such as strong beam-weak column phenomenon, improper reinforcement detailing and poor material properties. Flexural plastic hinges occurred at the columns ends after testing the substandard specimen under both constant axial load and reversed cyclic lateral loading. Afterwards, the damaged columns were externally wrapped with CFRP sheets both in transverse and longitudinal directions and then retested under the same loading protocol. In addition, ambient vibration measurements were taken from the undamaged, damaged and the repaired specimens at each structural repair steps to identify the effectiveness of each repairing step by monitoring the change in the natural frequencies of the tested specimen. The ambient vibration test results showed that the applied repairing technique with external CFRP wrapping was proved to recover stiffness of the pre-damaged specimen. Moreover, the lateral load capacity of the pre-damaged substandard RC frame was restored with externally bonded CFRP sheets.

A Study on Analysis of Influx Path and Ingredient of Sedimentation Substance in Tunnel Drainage System (터널 배수시설에 유입된 침전물의 유입경로 및 성분분석 연구)

  • Woo, Jong-Tae;Yoo, Sang-Geon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.145-152
    • /
    • 2004
  • Red sedimentation substance contains large portion of Fe. The earth retaining structure of a tunnel and ground water containing more portion of Fe than other area are the major factor of this substance In case of white sedimentation substance, the most frequently founded ingredient is CaO, which is occurred in case grouting injection materials for ground reinforcement is transmitted into a tunnel system by ground water. This substance is doesn't affect safety of a tunnel Black sedimentation substance is often found in tunnels near station. This substance is a mixture of either white or red sedimentation substance and detergent material in station transmitted to a tunnel drainage system.

An Experimental Assessment on the Structural Behavior of Bolt Connected Deep Corrugated Steel Plate (볼트이음된 대골형 파형강판의 구조거동에 대한 실험적 평가)

  • Oh, Hong Seob;Lee, Ju Won;Jun, Beong Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 2011
  • Deep corrugated steel plate structure has more compressive force and flexibility in bending behavior than short span structure. Asymmetric earth pressure distribution has occurred during construction. Ultimate strength and moment in domestic area, having superior ability at bending strain has been examined in this study. Based on the result of the study preceded, performance of Deep corrugated steel plate specimen has been evaluated by comparing increase of strength according to the increase of reinforcement content in bolt connections and failure mode of specimen.

Analysis of Reinforcement Effect with Geotextile types on Soft Ground (연약노반상에서의 토목섬유 적용에 따른 보강효과 분석)

  • Lee Jin-Wook;Choi Chan-Yong;Lee Seong-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.69-75
    • /
    • 2006
  • In this study, Several types of geotextile was used on the selected track-bed. The use of geotextile prove a economical and efficientmean to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chungbuk lines in Korea were selected to investigate in current condition the of track and roadbed. This testing site was divided into 5 sections. In the four sections, different types of geotextiles were installed. In order to estimate for performance of the reinforced section with geotextiles on the soft ground, four different geotextiles were installed and compared with no reinforced section. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, and earth pressures were investigated. The following is the summaries from the field tests. As a conclusion, According to naked eyes investigation, mud pumping didn't happen at reinforced sections, but no reinforced section was happen to a top of track for 6 months. And Elastic displacements at the reinforced and no reinforced section were about $30.7\%\;and\;73.8\%,$ respectively. Also, It was found that plastic displacement in reinforced section was retrained about $50\%$ more than that in no reinforced section.