• 제목/요약/키워드: Earth magnetic fields

검색결과 94건 처리시간 0.035초

BRIEF REPORTS ON KAISTSAT-4 MISSION ANALYSIS

  • Seon, J.
    • Journal of Astronomy and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.233-240
    • /
    • 2000
  • Five scientific instruments are planned on KAISTSAT-4 that is scheduled to be launched in 2002. A far ultra-violet imaging spectrograph and a set of space plasma instruments are currently being designed. The imaging spectrograph will make observations of astronomical objects and Earth's upper atmosphere. The plasma instrumentation is capable of fast measuring the thermal magnetosphere plasmas, cold ionospheric plasmas and the Earth's magnetic fields. Major system drivers and constraints on the payloads as well as the spacecraft are identified. A preliminary analysis of the K-4 mission has been undertaken with the system requirements that are derived from the system drivers. Detailed investigation shows that Sun-synchronous orbits with approximate altitudes of 800km are optimal to satisfy the identified requirements. Comparisons with other orbits of different inclinations are also shown. Four operation modes and a daily schedule of spacecraft maneuver are found from the Sun-synchronous orbital model. It is shown that the scientific objectives of K-4 can be achieved with moderate levels of design and operation risks.

  • PDF

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF

Breakthrough Starshot Project: Could Relativistic Spacecraft Make it to Alpha Centauri?

  • Hoang, Thiem
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.56.3-56.3
    • /
    • 2017
  • The Breakthrough Starshot initiative aims to launch gram-scale spacecraft to a speed of v~0.2c, capable of reaching Alpha Centauri and seeing the Earth-like exoplanet, Proxima b, from close distance, in about 20 years. However, a critical challenge for the initiative is the effects of interstellar matter and magnetic field to the relativistic spacecraft during the journey. In this talk, I will first present our evaluation for the damage to the spacecraft by interstellar gas and dust based on a detailed analysis of the interaction of a relativistic spacecraft with the ISM. Second, I will discuss the deflection and oscillation of spacecraft by interstellar magnetic fields. Third, I will discuss the gas drag fore at high energy regime and quantify its effect on the slowing down of the relativistic lightsails. Finally, we will discuss practical strategies to mitigate the damage by interstellar dust and to maintain the spacecraft aiming at the intended target.

  • PDF

자성 및 발광 특성이 조절 가능한 다기능 코어/중간체/쉘 나노 입자 합성 (Synthesis of the Multifunctional Core/Intermediate/Shell Nanoparticles: Tunable Magnetic and Photoluminescence Properties)

  • 김문경;김세윤;문경석;신원호;정형모
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.463-470
    • /
    • 2019
  • Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.

Evolution Strategy 알고리즘을 이용한 송진선로 주변에서의 최적 자계차폐 위치선정 (Decision of Optimal Magnetic Field Shielding Location around Power System Using Evolution Strategy Algorithm)

  • 최세용;나완수;김동훈;김동수;이준호;박일한;신명철;김병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권1호
    • /
    • pp.5-14
    • /
    • 2002
  • In this paper, we analyze inductive interference in conductive material around 345 kV power transmission line, and evaluate the effects of mitigation wires. Finite element method (FEM) is used to numerically compute induced eddy currents as well as magnetic fields around powder transmission lines. In the analysis model, geometries and electrical properties of various elements such as power transmission line, buried pipe lines, overhead ground wire, and conducting earth are taken into accounts. The calculation shows that mitigation wire reduces fairly good amount of eddy currents in buried pipe line. To find the optimum magnetic field shielding location of mitigation wire, we applied evolution strategy algorithm, a kind of stochastic approach, to the analysis model. Finally, it was shown that we can find more effective shielding effects with optimum location of one mitigation wire than with arbitrary location of multi-mitigation wires around the buried pipe lines.

사마륨-코발트 자성 섬유 제조를 위한 환원 거동 연구 및 환원-확산 공정의 최적화 (Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation)

  • 이지민;김종렬;좌용호
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.334-339
    • /
    • 2019
  • To meet the current demand in the fields of permanent magnets for achieving a high energy density, it is imperative to prepare nano-to-microscale rare-earth-based magnets with well-defined microstructures, controlled homogeneity, and magnetic characteristics via a bottom-up approach. Here, on the basis of a microstructural study and qualitative magnetic measurements, optimized reduction conditions for the preparation of nanostructured Sm-Co magnets are proposed, and the elucidation of the reduction-diffusion behavior in the binary phase system is clearly manifested. In addition, we have investigated the microstructural, crystallographic, and magnetic properties of the Sm-Co magnets prepared under different reduction conditions, that is, $H_2$ gas, calcium, and calcium hydride. This work provides a potential approach to prepare high-quality Sm-Co-based nanofibers, and moreover, it can be extended to the experimental design of other magnetic alloys.

유한요소법을 이용한 MT 탐사 자료의 모델링: 보조장 계산의 고찰 (Modeling of Magnetotelluric Data Based on Finite Element Method: Calculation of Auxiliary Fields)

  • 남명진;한누리;김희준;송윤호
    • 지구물리와물리탐사
    • /
    • 제14권2호
    • /
    • pp.164-175
    • /
    • 2011
  • 낮은 주파수의 자연 전자기장을 이용하는 MT 탐사는 지하 심부의 전기전도도 구조를 규명할 수 있기 때문에, 지열에너지자원 탐사, 이산화탄소의 지중저장을 위한 부지 선정, 인공저류층 지열발전 시스템 유망 지역 탐사 등에 적용되고 있다. 또한 해양 MT 자료를 활용하면 해양전자탐사 자료 해석의 정확도를 높일 수 있다. MT 자료의 해석에 있어 정확한 모델링 기법은 필수적이다. 변유한요소법을 이용한 기존의 MT 모델링 알고리듬에서는 보조장인 자기장을 차분적 방법론에 기초하여 계산하였기 때문에 수직자기장의 정확한 계산에 한계가 있었다. 이 논문에서는 변유한요소법의 기저함수들의 선형결합으로 근사된 전기장을 직접 미분하는 방법으로 수직자기장을 계산하였다. 수치 실험을 통해, 지형이 있는 경우에 수직자기장에 대한 기존의 알고리듬의 결과에 오차가 있음을 확인하였다. 최종적으로, 지형이 있는 모형에 대한 기존의 인덕션 벡터와 티퍼의 결과는 오차가 있는 수직자기장을 이용하였으므로, 이 논문에서는 개선된 알고리듬을 이용하여 올바른 결과를 제시하고자 한다.

자기공명반응 시뮬레이션 해설 및 비교 (A Review on Nuclear Magnetic Resonance Logging: Simulation Schemes)

  • 장재화;남명진
    • 지구물리와물리탐사
    • /
    • 제16권2호
    • /
    • pp.97-105
    • /
    • 2013
  • 자기공명검층은 수소와 자기장의 상호작용을 측정, 분석하는 물리검층 방법으로 이는 저류층 평가를 위한 중요한 물리검층 방법 중 하나이다. 측정된 감쇠 신호 즉, 이완은 측정지역 내 수소의 밀도에 대한 정보와 유체의 종류에 따른 감쇠속도에 대한 정보를 포함하고 있으며, 이를 바탕으로 공극률, 투과도와 습윤도 등을 예측할 수 있다. 1950년대 초반 랜덤워크로 자기공명의 이완감쇠를 시뮬레이션한 것을 시작으로 자기공명반응에 대한 연구가 급격히 발전되었다. 이 논문에서는 자기공명 시뮬레이션의 연구 동향을 먼저 살펴 보고, 자기공명반응인 이완을 발생시키는 이완메커니즘에 대해 간단히 알아본다. 이에 기초하여 자기공명검층에서 주로 측정하는 횡축이완곡선을 자기장구배를 고려하는 경우와 고려하지 않는 시뮬레이션 방법에 대해 비교분석하고 자기장구배가 이완메커니즘 및 횡축이완곡선에 미치는 영향에 대해 분석한다.

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제46권1호
    • /
    • pp.49-63
    • /
    • 2013
  • Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.

The Influence of the Interplanetary Magnetic Field (IMF)-Dependent Ionospheric Convection on the Thermospheric Dynamics

  • Kwak, Y.S.;Ahn, B.H.;Richmond, A.D.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.34-34
    • /
    • 2003
  • To better understand how high-latitude electric fields influence thermospheric dynamics, we study winds in the high-latitude lower thermosphere using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model of the National Center for Atmospheric Research (NCAR/TIEGCM). In order to compare with Wind Imaging Interferometer (WINDII) observations the model is run for the conditions of 1992-1993 southern summer. The association of the model results with the interplanetary magnetic field (IMF) is also examined to determine the influences of the IMF-dependent ionospheric convection on the winds. The wind patterns show good agreement with the WINDII observations, although the model wind speeds are generally weaker than the observations. It is confirmed that the influences of high-latitude ionospheric convection on summertime thermospheric winds are seen down to 105 km. For negative and positive IMF By the difference winds, with respect to the wind during null IMF conditions, show significantly strong anticyclonic and cyclonic vortices, respectively, down to 105 km. For positive IMF Bz the difference winds are largely confined to the polar cap, while for negative IMF Bz they extend to subauroral latitudes. The IMF Bz-dependent diurnal wind component is strongly correlated with the corresponding component of ionospheric convection velocity down to 108 km and is largely rotational. The influence of IMF By on the lower thermospheric summertime zonal-mean zonal wind is substantial at high latitudes, with maximum wind speeds being 60 m/s at 130 km around 77 magnetic latitude.

  • PDF