• Title/Summary/Keyword: Earth Mutual Resistance

Search Result 8, Processing Time 0.027 seconds

Evaluation of Errors Due to Earth Mutual Resistance in Measuring Ground Impedance of Vertically-driven Ground Electrode (수직 접지전극의 접지임피던스 측정에서 도전유도에 의한 오차 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1778-1783
    • /
    • 2009
  • Ground impedance for the large grounding system is measured according to the IEEE Standard 81.2 which is based on the revised fall-of-potential method of installing auxiliary electrode at a right angle. When the auxiliary electrodes are located at an angle of $90^{\circ}$, the ground impedance inevitably includes the error due to earth mutual resistance. In this paper, in order to accurately measure the ground impedance of vertically-driven ground electrodes, error rates due to earth mutual resistance are evaluated by ground resistance and ground impedance measuring devices and compared with calculated values. As a result, the measured results are in good agreement with the computed results considering soil layer with different resistivity. The error rates due to earth mutual resistance decrease with increasing the length of ground electrode in the case that the ratio of the distance between the ground rod to be measured and the auxiliary electrodes to the length of ground electrode(D/L) is same. The ground impedance should be measured at the minimum distance between the auxiliary electrodes that will have an estimated measurement accuracy due to earth mutual resistance.

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.

Evaluation of Measurement Accuracy of Ground Impedances in Counterpoise according to Location of Auxiliary Electrodes (보조전극의 위치에 따른 매설지선의 접지임피던스 측정정확도의 평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Choi, Jong-Hyuk;Kim, Dong-Kyu;Lee, Gyu-Sun;Yang, Soon-Man;Kim, Tae-Gi
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.352-355
    • /
    • 2009
  • The ground resistance has been used as a method of estimating the capability of counterpoise. When transient currents blow through a ground electrode, it is reasonable to evaluate the performance of ground electrode system as a ground impedance instead of ground resistance. However, the measurement method of ground impedance for counterpoise is not clearly presented. This paper describes the measurement method of ground impedance considering the earth mutual resistances and AC mutual coupling. When we measure the ground impedance, the error due to earth mutual resistances depends on the distance between the auxiliary electrodes and the electrode under test. The measurement accuracy of high frequency ground impedance is mainly influenced by the location of the current electrode and the potential electrode.

  • PDF

Measurement method of ground impedance for the grounding grid (접지그리드의 접지임피던스 측정 기법)

  • Lee, Bok-Hee;Choi, Jong-Hyuk;Choi, Young-Chul;Yoo, Jae-Duk;Beak, Young-Hwan;Kim, Dong-Seong;Shin, Hee-Kyung;Yoo, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1487_1488
    • /
    • 2009
  • In these days, the common grounding systems are adapted in most large structures. In order to evaluate the performance of grounding system, it is needed to measure ground impedance. Measuring methods of ground impedance for a large scale grounding systems have not been yet presented in detail. In this paper, we analyze earth mutual resistance and mutual coupling of $15{\times}15m$ grounding grid in different arrangements of auxiliary electrode. As a results, the auxiliary electrodes are installed where the error rate due to earth mutual resistance is less than 5%. Also, the potential lead is installed at obtuse angle from the current lead and the overlapped length between potential lead and grounding grid are minimized.

  • PDF

Effects of Ac Mutual Coupling According to Location of Auxiliary Electrodes In Measuring the Ground Impedance of Vertically or Horizontally Buried Ground Electrode (수직 또는 수평으로 매설된 접지전극의 접지임피던스 측정시 보조전극 위치에 따른 전자유도의 영향)

  • Choi, Young-Chul;Choi, Jong-Hyuk;Lee, Bok-Hee;Jeon, Duk-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.86-92
    • /
    • 2009
  • In order to minimize ac mutual coupling, the auxiliary electrode are located at a right angle in measuring ground impedance. In case that the measurement space is limited, the alternative method is employed. At that time, it is necessary to investigate the measurement errors due to ac mutual coupling and earth mutual resistance in measuring the ground impedances. 'This paper presents the measurement accuracy according to the location of the current and potential auxiliary electrodes in measuring ground impedance of vertically or horizontally buried ground electrode. The measurement errors due to ac mutual coupling were evaluated Consequently, the effect of ac mutual coupling on the measurement accuracy for horizontally buried ground electrode is greater than that for vertically buried ground electrode. Measurement errors due to ac mutual coupling is the largest when the current and potential auxiliary electrodes are located in parallel. The 61.8[%] rule is inappropriate in measuring ground measurement. Theoretically, in case that the angle between the current and potential auxiliary electrodes is 90$[^{\circ}]$, there is no ac mutual coupling. If it is not possible to route the current and potential auxiliary electrodes at a right angle with limitation of measurement space, the location of these electrodes with an obtuse angle is preferred to that with an acute angle in reducing the measurement errors due to ac mutual coupling.

A Study on the Development of Reinforced Earth wall by Geotextile (토목섬유를 이용한 보강토옹벽의 개발)

  • 도덕현;유능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.63-73
    • /
    • 1986
  • The model was developed by applying the principles of Bacot and Vidal to measure the behavior of deformation of the reinforced earth wall, and various tasts were performed by using the plastic fabric filter and the galvanized steel plate as a strip. The results obtained are as follows; 1. When the reinforced earth wall is deformed by the load, the strip is completely reinforced by the backfill materials and changed to the rigid block state, under the state of failure which permits sliding only, the next theoretical equation is formed. (H/L) . tan$\theta$ [cosO-sinOtanO] =2sinO[tan($\theta$ +0) +tanO] 2.The degree of the mutual reinforcement of the backfill material and the strip depend on the physical characteristics of the each material especially the angle of shearing resistance of the backfill material is desirable over 20$^{\circ}$ and, if it is over 400, its function could be a maximum. 3.The distribution of the maximum tensile strain of the reinforcement is changing with the height of reinforced earth wall, and when the height from bottom of the reinforced earth wall is 1.85 to 3. 35m, the maximum tensile strain appears at 2m from the skin element. The maximum tensile strain is increased by the depth of the reinforced earth wall from surface, and increased with the lapse of time after construction. 4.The failure surface of the reinforced earth wall by the concrete skin was about 60$^{\circ}$and the failure behavior of the reinforced earth wall in which the fabric filter was buried was slow, and so the pore pressure could be decreased. 5.It is possible to construct the fabric retained earth wall by the plastic fabric filter only. And the reinforcing effect between the steel plate and the plastic fabric filter is not largely different. however, in the aspect of the economic durability, the plastic fabric filter is more advantageous. 6.The reinforcing action mainly depends on the width and the length of the reinforcing materials, if possible, the full width is advantageous to enlarge the contact area with backfill. but considering the economic aspect, it is neccessary to develop the method controlling the space of the strip.

  • PDF

A Study on Stress Redistribution Mechanism for Tunneling in an Unconsolidated Ground with Inclined Layers (미고결 층상지반에서 터널굴착시 응력재분배 메커니즘에 관한 연구)

  • Park, Si Hyun;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.53-61
    • /
    • 2006
  • This study is aimed at to examine the stress redistribution mechanism for tunneling in an unconsolidated ground with inclined layers through model tests. To make the unconsolidated ground, two dimensional model ground is prepared with aluminum rods and blocks, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. It is carried out to measure the ground deformation and the stress redistribution for model ground with tunneling by measuring apparatus respectively. For the ground deformation, surface settlements are measured to examine the deformation features during tunnel excavation. For the stress redistribution, the earth pressure acting on both the tunneling part and its surrounding parts is measured to examine their mutual relationship. Based on test results, precise examination is conducted on the stress redistribution mechanism in the unconsolidated ground with inclined layers during tunnel construction.

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.