• 제목/요약/키워드: Early Damage Detection

검색결과 169건 처리시간 0.028초

모바일 코드를 이용한 최적적응 침입탐지시스템 (An Optimum-adaptive Intrusion Detection System Using a Mobile Code)

  • 방세중;김양우;김윤희;이필우
    • 정보처리학회논문지C
    • /
    • 제12C권1호
    • /
    • pp.45-52
    • /
    • 2005
  • 지식사회의 역기능인 정보시스템에 대한 각종 침해행위들로 정보자산의 피해규모는 나날이 증가하고 있다. 이러한 침해행위 중에서 네트워크 보안과 관련된 범죄수사 요구의 강화는 침해행위탐지와 이에 대한 대응 및 보고를 포함하는 다양한 형태의 침입탐지시스템들에 대한 연구개발을 촉진시켜왔다. 그러나 초기 침입탐지시스템은 설계상의 한계로 다양한 네트워크 환경에서 오탐지(false-positive)와 미탐지(false-negative)뿐만 아니라 침입탐지시스템을 우회하는 방법에 대처하기 힘들었다. 본 논문에서는 이런 문제점을 모바일 코트를 통한 최적적응 능력을 갖춘 가상프로토콜스택(Virtual Protocol Stack)을 통해 보완함으로서 침입탐지시스템이 다양한 환경에서 능동적으로 감시중인 네트워크의 상황을 자동학습 하도록 하였다. 또한 본 논문에서는 이를 적용하여 삽입/회피(Insertion/Evasion) 유형의 공격이 적극적으로 탐지될 수 있음을 보였고, 이러한 방법은 보다 다양한 혼성의 네트워크 환경에서도 적응능력을 갖춘 침입탐지 기법으로 확대 적용될 수 있음을 논의하였다.

Edge 분석과 ROI 기법을 활용한 콘크리트 균열 분석 - Edge와 ROI를 적용한 콘크리트 균열 분석 및 검사 - (Edge Detection and ROI-Based Concrete Crack Detection)

  • 박희원;이동은
    • 한국건설관리학회논문집
    • /
    • 제25권2호
    • /
    • pp.36-44
    • /
    • 2024
  • 본 논문에서는 합성곱신경망과 ROI기법을 이용한 콘크리트 균열 분석에 관해 소개한다. 콘크리트 표면, 빔과 같은 구조물은 피로 응력, 주기 부하에 노출되며, 이는 일반적으로 구조물의 표면에서 미세한 수준에서 시작되는 균열을 야기한다. 구조물의 균열은 안정성을 저하시키고 구조물의 견고함을 감소시킨다. 조기 발견을 통해 손상 및 고장 가능성을 방지하기 위한 예방 조치를 취할 수 있다. 일반적으로 수동 검사 결과는 품질이 좋지 않고, 대규모 기반 시설의 경우 접근이 어려우며, 균열을 정확하게 감지하기 어렵다. 이러한 수동검사의 자동화는 기존 방식의 한계를 해결할 수 있기 때문에 컴퓨터 비전 기반의 연구들이 수행되었다. 하지만 다양한 유형의 균열이나, 열화상 카메라 등을 이용한 연구들은 부족한 상태이다. 따라서 본 연에서는 콘크리트 벽의 균열을 자동으로 감지하는 방법론을 개발하여 제시하며, 다음과 같은 연구 내용을 목표로 한다. 첫째, 균열 감지 이미지 기반 분석의 주요 장점인 이미지 처리 기술을 사용하여 기존의 수동 방법과 비교하여 정확도가 향상된 결과 및 정보를 제공한다. 둘째, 강화된 Sobel edge segmentation 기술 및 ROI 기법 기반의 알고리즘을 개발하여 비파괴 시험을 위한 자동 균열 감지 기술을 구현한다.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • 제11권1호
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

단조프레스기의 유압유 누유 영역 영상 감지 시스템 (Image Detection System for leakage regions of Hydraulic Fluid in Foring Press Machine)

  • 이경환;배성호
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.35-39
    • /
    • 2009
  • 단조프레스기의 유압실에서 배관의 연결부위의 손상으로 인한 누유는 인명피해와 기계 파손의 위험성이 있어 이를 조기에 발견하여 예방하는 시스템이 필요하다. 본 논문에서는 원격지에서 회전형 카메라를 이용하여 유압유의 누유여부를 자동 인식하는 시스템을 구현 하였다. 구현한 시스템은 레이블링 과정에서 후보누유영역을 나타내는 최소경계사각형(MBR)을 구하고 MBR의 넓이와 높이 및 MBR의 면적과 후보 누유 영역의 면적비를 이용하여, 올바른 누유영역을 추출하였다. 실험을 통하여 제안한 시스템이 여러 가지 조명 환경에서도 누유영역을 정확하게 찾아내는 것을 확인하였다.

  • PDF

전자기센서를 이용한 고속철도용 차륜재의 구름접촉피로 손상 모니터링 (Damage Monitoring of Rolling Contact Fatigue in Wheel Specimen for High Speed Train Using Electro-Magnetic Sensor)

  • 권석진;황지성;서정원;이진이
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.600-606
    • /
    • 2012
  • Upon investigation of the damaged wheels for high speed train it was determined that the damage was caused by rolling contact fatigue during operation of train. The major problems that railway vehicle system using wheel-rail has to face during operation of railway vehicle are rolling contact fatigue, cracks in wheels, cracks in rails and wheel-rail profile wear. If these deficiencies are not controlled at early stages the huge economical problems due to unexpected maintenance cost in railway vehicle can be happened. Also, If the accurate knowledge of contact conditions between wheel and rail can be evaluated, the damage of wheel can be prevented and the maintenance operation can save money. This paper presents the applicability of electro-magnetic technique to the detection and sizing of defects in wheel. Under the condition of continuous rolling contact fatigue the damage of wheel has continuously monitored using the applied sensor. It was shown that the usefulness of the applied sensor was verified by twin disc test and the measured damaged sizes showed good agreement with the damaged sizes estimated by electro-magnetic technique.

Modified Halterman Appliance를 이용한 제 1대구치 이소맹출의 치험례 (TREATMENT OF PERMANENT FIRST MOLAR BY MODIFIED HALTERMAN APPLIANCE)

  • 김영재;김종철;손동수
    • 대한소아치과학회지
    • /
    • 제24권4호
    • /
    • pp.771-775
    • /
    • 1997
  • Ectopic eruption is defined as abnormal eruption and results in malpositioned teeth and abnormal root resorption of adjacent teeth. Ectopic eruption, first reported by Chapman, occurs in 3% of the population and that mostly in the maxilla. Etiologic factors include narrow maxilla, large maxillary teeth, retarded calcification of the first molar, inclined eruption path of the first molar and retruded position of the maxilla. Impaction of the second molar is rare and occurs mostly in the mandible. Major causes are large teeth and insufficient arch length. Halterman has devised a method of distalizing a ectopically erupting first molar by cementing a band on the second deciduous molar with a hook soldered and a button bonded to the occlusal surface of the first permanent molar. Ectopically erupted posterior teeth should be treated early to maintain normal development of the dentition, harmony of facial growth and occlusal support, a failure to do so could result in severe malocclusion, periodontal damage and continued root resorption of the adjacent teeth. Early detection and treatment is thus vital. The author is submitting this report as he has obtained favorable results in treating a patient who came to the SNUDH Dept. of Pediatric Dentistry complaining of the first molar by using a modified Halterman appliance.

  • PDF

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

지형공간정보와 제원 특성을 적용한 대포병레이더 최적배치모형 (Optimal Allocation Model of Anti-Artillery Radar by Using ArcGIS and its Specifications)

  • 이문걸
    • 산업경영시스템학회지
    • /
    • 제41권2호
    • /
    • pp.74-83
    • /
    • 2018
  • It is very crucial activities that Korean army have to detect and recognize enemy's locations and types of weapon of their artillery firstly for effective operation of friendly force's artillery weapons during wartime. For these activities, one of the most critical artillery weapon systems is the anti-artillery radar (hereafter; radars) for immediate counter-fire operations against the target. So, in early wartime these radar's roles are very important for minimizing friendly force's damage because arbiters have to recognize a several enemy's artillery positions quickly and then to take an action right away. Up to date, Republic of Korea Army for tactical artillery operations only depends on individual commander's intuition and capability. Therefore, we propose these radars allocation model based on integer programming that combines ArcGIS (Geographic Information System) analysis data and each radar's performances which include allowable specific ranges of altitude, azimuth (FOV; field of view) and distances for target detection, and weapons types i.e., rocket, mortars and cannon ammo etc. And we demonstrate the effectiveness of their allocation's solution of available various types of radar asset through several experimental scenarios. The proposed model can be ensured the optimal detection coverage, the enhancement of artillery radar's operations and assisting a quick decision for commander finally.

Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe

  • Cao, Jianbin;Zhang, Zhousuo;Guo, Yanfei;Gong, Teng
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.233-242
    • /
    • 2019
  • Early detection of damage bonding state such as insufficient bonding strength and interface partial contact defect for the explosive clad pipe is crucial in order to avoid sudden failure and even catastrophic accidents. A generalized and efficient model of the explosive clad pipe can reveal the relationship between bonding state and vibration characteristics, and provide foundations and priory knowledge for bonding state detection by signal processing technique. In this paper, the slender explosive clad pipe is regarded as two parallel elastic beams continuously joined by an elastic layer, and the elastic layer is capable to describe the non-uniform bonding state. By taking the characteristic beam modal functions as the admissible functions, the Rayleigh-Ritz method is employed to derive the dynamic model which enables one to consider inhomogeneous system and any boundary conditions. Then, the proposed model is validated by both numerical results and experiment. Parametric studies are carried out to investigate the effects of bonding strength and the length of partial contact defect on the natural frequency and forced response of the explosive clad pipe. A potential method for identifying the bonding quality of the explosive clad pipe is also discussed in this paper.