• 제목/요약/키워드: Early Damage Detection

검색결과 169건 처리시간 0.026초

Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19)

  • Ajay Vijayakumar;Jong-Hoon Kim
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.113-121
    • /
    • 2024
  • Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinaseMB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.

구조 실험과 SASW를 이용한 플랫 플레이트 기둥-슬래브접합부에서의 구조적 거동에 관한 연구 (Structural Behavior in Slab-Column Connections with Shear Plate Using Structural Experiment and Non-destructive Test, Spectral Analysis of Surface Waves)

  • 주현지;조영상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.48-51
    • /
    • 2004
  • This paper is to study the response of flat plate slab-column connections consisting of various types of shear reinforcement and steel plate subjected to gravity loadings, mainly punching shear forces using the non-destructive testing, spectral analysis of surface waves and structural experiments. The base specimen failed due to punching shear generated from the gravity. The three other types of slab shear reinforcement and steel plate showed effective in resisting punching shear for these types of connections under gravity loading. This study has focused in evaluating the velocity response of a Surface wave during the early age as the poured concrete specimens have been hardened, the possibility of damage detection in the slab-column connection and the relationship between the punching shear forces and the surface wave velocities under the condition that the punching shear forces had gradually increased until the flat plate slab in slab-column connection had been failed.

  • PDF

전계센서의 원리를 이용한 공기중 부분방전신호 검출 (PD Detection in Air by Capacitive Electric Field Sensor)

  • 이용희;이강원;박성희;강성화;신양섭;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.900-903
    • /
    • 2002
  • Partial discharges(PD) in air, corona discharges, deteriorate the insulation strength. So, it is necessary to detect PD at an early stage before the system failure and extensive damage to the equipment. PD emit signals which can be detected by applying an capacitive electric field diagnosis. In this paper, We measured signals by capacitive electric field sensor and analyzed FFT from PD, and then compared conventional electric PD detecting method to capacitive electric field diagnosis by $\Psi-q-n$, $\Psi-v-n$, $\Psi-n$, $\Psi-q$ distributions.

  • PDF

기계구동계의 작동상태 진단을 위한 지능형 시스템의 개발 (Development of Intelligent System for Moving Condition Diagnosis of the Machine Driving System)

  • 박흥식
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.42-49
    • /
    • 1998
  • This wear debris can be harvested from the lubricants of operating machinery and its morphology is directly related to the damage to the interacting surface from which the particles originated. The morphological identification of wear debris can therefore provide very early detection of a fault and can also often facilitate a diagnosis. The purpose of this study is to attempt the developement of intelligent system for moving condition diagnosis of the machine driving system. The four shape parameter(50% volumetric diameter, aspect, roundness and reflectivity) of war debris are used as inputs to the neural network and learned the moving condition of five values(material3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristics and recognized the moving condition and materials very well by neural network.

Invasive cervical resorption: treatment challenges

  • Kim, Yookyung;Lee, Chan-Young;Kim, Euiseong;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • 제37권4호
    • /
    • pp.228-231
    • /
    • 2012
  • Invasive cervical resorption is a relatively uncommon form of external root resorption. It is characterized by invasion of cervical region of the root by fibrovascular tissue derived from the periodontal ligament. This case presents an invasive cervical resorption occurring in maxillary lateral incisor, following damage in cervical cementum from avulsion and intracoronal bleaching procedure. Flap reflection, debridement and restoration with glass ionomer cement were performed in an attempt to repair the defect. But after 2 mon, more resorption extended apically. Considering root stability and recurrence potential, we decided to extract the tooth. Invasive cervical resorption in advanced stages may present great challenges for clinicians. Therefore, prevention and early detection must be stressed when dealing with patients presenting history of potential predisposing factors.

식물체 잎표면의 열화상 분석을 통한 오존 피해 조기 진단 (Early Detection of Foliar Damage Caused by Ozone Exposure with Thermal Image Analysis)

  • 허재선;이충일
    • 한국식물병리학회지
    • /
    • 제12권1호
    • /
    • pp.132-136
    • /
    • 1996
  • 오존에 의한 식물체의 가시피해 발현 이전에 나타나는 비가시적 피해를 찾아내기 위하여 적외선 열화상장치(infrared thermography)를 이용하여 하루 8시간씩 0.3 ppm 오존에 노출된 나팔꽃(Ipomoea purpurea)잎표면의 온도분포 변화를 조사하였다. 노출 첫날에는 온도분포의 뚜렷한 변화를 볼 수 없었다. 노출 2일째, 오존 노출 2시간 결과후, 완전히 자란 제3엽의 특정 부분에서 급격한 온도분포 변화를 보였으며, 그로부터 약 4시간 경과 후에 동일 지점에서 최초의 가시적 피해가 발생했다. 급격한 온도분포 변화를 보인 부분과 최초 가시피해가 발생한 부분이 일치한 점은 가시피해 발생과 그 이전의 온도분포 변화가 밀접하게 상관되어 있다는 것을 의미한다고 하겠다. 잎표면의 열화상 분석방법을 대기오염원에 의한 식물체의 가시피해 발현 이전에 진행되고 있는 비가시적 반응의 조기진단에 적용할 수 있으며 생태환경 친화적인 대기 환경관리를 위한 대기오염원은 배출조절용 생체반응기(biosensor)로 이용 가능하겠다.

  • PDF

Long term activity measurement of the primary circuit water on the LVR-15 research reactor

  • Ladislav Viererbl;Vit Klupak;Hana Assmann Vratislavska
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1250-1253
    • /
    • 2024
  • Activity measurement of the primary circuit water of fission reactors is one method that can provide early detection of a damaged fuel assembly in the reactor core. This is an important aspect in the safe operation of the reactor and for radiation protection of staff. Radionuclides in the primary circuit water are produced by the activation of stable nuclides and the fission of fissile nuclides, mainly the isotope 235U. In the LVR-15 research reactor, measurement of the activity of the primary circuit water has been regularly undertaken since 1996. A water sample is taken from the primary circuit every week and the activities are measured four days later using gamma spectrometry. The results of these long-term measurements from 1996 to 2022 are presented. The activity time dependences of the individual radionuclides are discussed in relation to fuel assembly damage and for events connected to contamination of the water by objects inserted into the primary circuit during experiments carried out near the reactor core.

Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury

  • Yuan Meng Yu;Qian Qian Ni;Zhen Jane Wang;Meng Lin Chen;Long Jiang Zhang
    • Korean Journal of Radiology
    • /
    • 제20권6호
    • /
    • pp.894-908
    • /
    • 2019
  • Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.

데이터 기반 경험적 모델의 원전 계측기 고장검출 민감도 평가 (Fault Detection Sensitivity of a Data-driven Empirical Model for the Nuclear Power Plant Instruments)

  • 허섭;김재환;김정택;오인석;박재창;김창회
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.836-842
    • /
    • 2016
  • When an accident occurs in the nuclear power plant, the faulted information might mislead to the high possibility of aggravating the accident. At the Fukushima accident, the operators misunderstood that there was no core exposure despite in the processing of core damage, because the instrument information of the reactor water level was provided to the operators optimistically other than the actual situation. Thus, this misunderstanding actually caused to much confusions on the rapid countermeasure on the accident, and then resulted in multiplying the accident propagation. It is necessary to be equipped with the function that informs operators the status of instrument integrity in real time. If plant operators verify that the instruments are working properly during accident conditions, they are able to make a decision more safely. In this study, we have performed various tests for the fault detection sensitivity of an data-driven empirical model to review the usability of the model in the accident conditions. The test was performed by using simulation data from the compact nuclear simulator that is numerically simulated to PWR type nuclear power plant. As a result of the test, the proposed model has shown good performance for detecting the specified instrument faults during normal plant conditions. Although the instrument fault detection sensitivity during plant accident conditions is lower than that during normal condition, the data-drive empirical model can be detected an instrument fault during early stage of plant accidents.

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.