• 제목/요약/키워드: EYFP

검색결과 3건 처리시간 0.02초

피브로인 H-chain 재조합 단백질 발현시스템을 이용한 황색형광실크의 제작 (Production of the yellow fluorescent silk using the fibroin heavy chain protein expression system in transgenic silkworm)

  • 김성완;최광호;김성렬;윤은영;박승원;강석우;구태원
    • 한국잠사곤충학회지
    • /
    • 제52권2호
    • /
    • pp.102-109
    • /
    • 2014
  • 본 연구의 목적은 누에형질전환 기술과 피브로인 재조합 단백질 발현시스템을 이용하여 황색형광실크를 개발하는 것으로서, 본 실험에서는 피브로인 H-chain의 N-말단과 C-말단을 이용하여 피브로인 재조합 단백질 발현 시스템을 제작하였고, 종결코돈이 없는 EYFP 유전자를 위의 발현 시스템에 클로닝하여 황색형광실크를 제작하였다. 누에형질전환체 선발을 위해서는 3xP3 promoter와 EGFP 유전자를 이용하여 선발하였고, 3,060개의 누에알에 microinjection 하여 F1 세대에서 8 bloods의 누에형질전환체를 선발하였다. 선발된 누에형질전환체는 초기배 단계의 눈과 신경조직, 유충과 번데기 그리고 성충의 눈에서 EGFP 형광단백질이 발현되는 것을 확인할 수 있었다. 또한 실크의 피브로인에서 EYFP 단백질이 발현되는 것을 확인하기 위해, F2세대의 누에형질전환체중에서 5령 3일 유충의 견사선을 형광현미경으로 관찰하였고, 중부 견사선에서 황색형광단백질이 발현되는 것을 확인할 수 있었다. 또한 F2 세대의 고치와 저온에서 정련한 실크에서도 황색형광단백질의 발현을 확인할 수 있었고, Western blot 분석에서도 EYFP 재조합 단백질이 피브로인 H-chain과 융합된 형태로 존재하는 것이 확인되었다. 이상의 결과에서 황색형광실크를 생산하는 누에형질전환체가 성공적으로 제작되었음을 확인할 수 있었다.

Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa

  • Dangol, Sarmina;Singh, Raksha;Chen, Yafei;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.828-836
    • /
    • 2017
  • Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the subcellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.

Establishment and Characterization of the Fibroblast Line from Silkie Bantam

  • Li, L.F.;Guan, W.J.;Li, H.;Bai, X.J.;Ma, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권4호
    • /
    • pp.492-499
    • /
    • 2009
  • A Silkie Bantam embryo fibroblast line (named SBF59 line) was successfully established by using direct explant culture and cryopreservation techniques. Cell morphology, viability, dynamic growth and contamination were tested and the karyotype and levels of isoenzymes of lactic dehydrogenase and malic dehydrogenase were analyzed. Four kinds of fluorescent protein extrogenes, including $pEGFP-N_3$, $pECFP-N_1$, $pEYFP-N_1$ and $pDsRed1-N_1$ were transfected into the cells. The results showed that the cells were healthy and possessed a fibrous structure without a change in morphology. The average viability of the cells was 96% before freezing and 90.5% after thawing. The growth curve appeared as typical "S" shape and the cell growth passed through a detention phase, a logarithmic phase and a platform phase; the estimated population doubling time (PDT) was 38.5 h; assays for the presence of bacteria, fungi, viruses and mycoplasmas were negative; the cell line showed no cross contamination when assessed by isoenzyme analysis; the chromosome number was 2n = 78 on more than 88% of occasions; four kinds of fluorescent protein extro-genes appeared to be expressed effectively with a high transfection efficiency between 18.3% and 42.3%. The cell line met the required quality control standard. It not only preserves the genetic resources of the important Silkie Bantam at the cellular level but also provides valuable materials for genomic, post-genomic, somatic cell cloning research and other applications.