• Title/Summary/Keyword: EXCEL computational tools

Search Result 4, Processing Time 0.02 seconds

EXCEL Tools for Geotechnical Reliability Analysis

  • Phoon, Kok-Kwang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.375-394
    • /
    • 2008
  • This paper discusses two user-friendly reliability techniques that could be implemented easily using the ubiquitous EXCEL. The techniques are First-Order Reliability Method with non-Gaussian random variables expressed using Hermite polynomials and collocation-based stochastic response surface method. It is believed that ease of implementation would popularize use of reliability-based design in practice.

  • PDF

Design Otimization Framework on Various Software Development Environments (다양한 소프트웨어 개발환경에서의 최적설계 프레임웍)

  • Yeom K.-C;Lee S.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.349-355
    • /
    • 2005
  • This paper concerns about how and why design frameworks for optimization should consider various software development environments such as MATLAB, VB, VBscript, Python, Tcl, PHP, Perl, and JAVA. The frameworks can be utilized by many engineers who have a basic concept about the optimization theory and/or basic knowledge about the computer programming languages. The framework will integrate a number of remote CAE tools, automatically execute them for design optimization, and have the capabilities of post-processing of data such as objective functions, state variables and design variables using a third-party spreadsheet program like Excel. The prototype framework developed in this study will be applied to various examples of optimization problems and show the validity of the proposed method of a framework implemenation.

A Feasibility Study on Integrating Computational Thinking into School Mathematics (수학 교과에서 계산적 사고(Computational Thinking)교육)

  • Chang, Kyung Yoon
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.553-570
    • /
    • 2017
  • The purpose of this study was to gain insights into investigating the feasibility on integrating computational thinking(CT) into school mathematics. Definitions and the components of CT were varied among studies. In this study, CT in mathematics was focused on thinking related with mathematical problem solving under ICT supportive environment where computing tools are available to students to solve problems and verify their answers. The focus is not given on the computing environment itself but on CT in mathematics education. For integrating CT into mathematical problem solving, providing computing environment, understanding of tools and supportive curriculum revisions for integration are essential. Coding with language specially developed for mathematics education such as LOGO, and solving realistic mathematical problems using S/W such as Excel in mathematics classrooms, or integrating CT into math under STEAM contexts are suggested for integration CT into math education. Several conditions for the integration were discussed in this paper.

siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens

  • Singh, Nitin Kumar;Seo, Bo Yeun;Vidyasagar, Mathukumalli;White, Michael A.;Kim, Hyun Seok
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.55-57
    • /
    • 2013
  • Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.