• Title/Summary/Keyword: EWMA control chart

Search Result 86, Processing Time 0.019 seconds

A Generalized MLE of the Process Change Point

  • Lee Jaeheon;Park Changsoon
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.436-441
    • /
    • 2004
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose a generalized maximum likelihood estimate. (MLE) of the process change point when a control chart with variable sample size (VSS) scheme signals a change in the process mean, and evaluate the performance of this estimator when it mi used with a VSS EWMA chart.

  • PDF

Switching performances of multivarite VSI chart for simultaneous monitoring correlation coefficients of related quality variables

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.451-459
    • /
    • 2017
  • There are many researches showing that when a process change has occurred, variable sampling intervals (VSI) control chart is better than the fixed sampling interval (FSI) control chart in terms of reducing the required time to signal. When the process engineers use VSI control procedure, frequent switching between different sampling intervals can be a complicating factor. However, average number of samples to signal (ANSS), which is the amount of required samples to signal, and average time to signal (ATS) do not provide any control statistics about switching performances of VSI charts. In this study, we evaluate numerical switching performances of multivariate VSI EWMA chart including average number of switches to signal (ANSW) and average switching rate (ASWR). In addition, numerical study has been carried out to examine how to improve the performance of considered chart with accumulate-combine approach under several different smoothing constant and sample size. In conclusion, process engineers, who want to manage the correlation coefficients of related quality variables, are recommended to make sample size as large and smoothing constant as small as possible under permission of process conditions.

Percentile-based design of exponentially weighted moving average charts (지수가중이동평균 관리도의 백분위수 기반 설계)

  • Jiyun Ku;Jaeheon Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.177-189
    • /
    • 2024
  • The run length is defined as the number of samples or subgroups taken before the control chart statistic exceeds the control limits. Because the distribution of run length is typically asymmetric and has a large variability, it may not be appropriate to use ARL (average run length) alone to design control charts and evaluate performance. In this paper, we introduce the concept of percentile (PL)-based design of control charts, and propose the procedure for PL-based design of EWMA (exponentially weighted moving average) charts. For the PL-based design of EWMA, we present a fitted function for the control chart coefficient, given specific percentile parameters. Additionally, we perform simulations to compare the proposed design with the ARL-based design. The simulation results show that the proposed design yields improvements in monitoring in-control processes while maintaining the ability to detect out-of-control performance.

Statistical Process Control Software developed by MS-EXCEL and Visual Basic (MS-EXCEL과 Visual Basic으로 개발한 통계적 공정관리 소프트웨어)

  • Han, Kyung-Soo;Ahn, Jeong-Yong
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.172-178
    • /
    • 1996
  • In this study, we developed a software for statistical process control. This software presents $\bar{x}$, R, CUSUM, EWMA control chart and process capability index. In this system, statistical process control methods are integrated into the automated method on a real time base. It is available in process control of specified type and can be performed on personal computer with network system.

  • PDF

An Economic Design of the Integrated Process Control Procedure with Repeated Adjustments and EWMA Monitoring

  • Park Changsoon;Jeong Yoonjoon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.179-184
    • /
    • 2004
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for process quality improvement. SPC reduces process variability by detecting and eliminating special causes of process variation, while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been need for an integrated process control (IPC) procedure which combines the two strategies. This article considers a scheme that simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process disturbance model under consideration is an IMA(1,1) model with a location shift. The EPC part of the scheme adjusts the process, while the SPC part of the scheme detects the occurrence of a special cause. For adjusting the process repeated adjustment is applied by compensating the predicted deviation from target. For detecting special causes the two kinds of exponentially weighted moving average (EWMA) control chart are applied to the observed deviations: One for detecting location shift and the other for detecting increment of variability. It was assumed that the adjustment of the process under the presence of a special cause may change any of the process parameters as well as the system gain. The effectiveness of the IPC scheme is evaluated in the context of the average cost per unit time (ACU) during the operation of the scheme. One major objective of this article is to investigate the effects of the process parameters to the ACU. Another major objective is to give a practical guide for the efficient selection of the parameters of the two EWMA control charts.

  • PDF

A study on the control chart pattern for detecting shifts using neural network in start-up process (초기공정에서 공정변화에 대한 신경망을 이용한 관리도 형태 연구)

  • 이희춘
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.65-70
    • /
    • 2001
  • This Paper Propose the control chart Pattern to provide a more comprehensive scheme for detecting process shifts using individual observations in start-up process. In this paper, which uses the backpropagation algorithm two samples are fed into the trained neural network to provide outputs ranging from 0 to 1. The main advantage of using neural networks approach with a control chart is that the neural network has almost no delay in detecting small shift. This paper illustrates how neural networks can provide a useful method for optimizing parameter(connection weights) that affect process control. Simulation results show that the performance of the proposed control chart using the neural network (NNCC) is quite promising.

  • PDF

Multivariate control charts based on regression-adjusted variables for covariance matrix

  • Kwon, Bumjun;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.937-945
    • /
    • 2017
  • The purpose of using a control chart is to detect any change that occurs in the process. When control charts are used to monitor processes, we want to identify this changes as quickly as possible. Many problems in quality control involve a vector of observations of several characteristics rather than a single characteristic. Multivariate CUSUM or EWMA charts have been developed to address the problem of monitoring covariance matrix or the joint monitoring of mean vector and covariance matrix. However, control charts tend to work poorly when we use the highly correlatted variables. In order to overcome it, Hawkins (1991) proposed the use of regression adjustment variables. In this paper, to monitor covariance matrix, we investigate the performance of MEWMA-type control charts with and without the use of regression adjusted variables.

Multivariate Control Charts for Autocorrelated Process

  • Cho, Gyo-Young;Park, Mi-Ra
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.289-301
    • /
    • 2003
  • In this paper, we propose Shewhart control chart and EWMA control chart using the autocorrelated data which are common in chemical and process industries and lead to increase the number of false alarms when conventional control charts are applied. The effect of autocorrelated data is modeled as a autoregressive process, and canonical analysis is used to reduce the dimensionality of the data set and find the canonical variables that explain as much of the data variation as possible. Charting statistics are constructed based on the residual vectors from the canonical variables which are uncorrelated over time, and the control charts for these statistics can attenuate the autocorrelation in the process data. The charting procedures are illustrated with a numerical example and simulation is conducted to investigate the performances of the proposed control charts.

  • PDF

Design and efficiency of the variance component model control chart (분산성분모형 관리도의 설계와 효율)

  • Cho, Chan Yang;Park, Changsoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.981-999
    • /
    • 2017
  • In the standard control chart assuming a simple random model, we estimate the process variance without considering the between-sample variance. If the between-sample exists in the process, the process variance is under-estimated. When the process variance is under-estimated, the narrower control limits result in the excessive false alarm rate although the sensitivity of the control chart is improved. In this paper, using the variance component model to incorporate the between-sample variance, we set the control limits using both the within- and between-sample variances, and evaluate the efficiency of the control chart in terms of the average run length (ARL). Considering the most widely used control chart types such as ${\bar{X}}$, EWMA and CUSUM control charts, we compared the differences between two cases, Case I and Case II, where the between-sample variance is ignored and considered, respectively. We also considered the two cases when the process parameters are given and estimated. The results showed that the false alarm rate of Case I increased sharply as the between-sample variance increases, while that of Case II remains the same regardless of the size of the between-sample variance, as expected.

Analysis of Output Constancy Checks Using Process Control Techniques in Linear Accelerators (선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석)

  • Oh, Se An;Yea, Ji Woon;Kim, Sang Won;Lee, Rena;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.185-192
    • /
    • 2014
  • The purpose of this study is to evaluate the results for the quality assurance through a statistical analysis on the output characteristics of linear accelerators belonging to Yeungnam University Medical Center by using the Shewhart-type chart, Exponentially weighted moving average chart (EWMA) chart, and process capability indices $C_p$ and $C_{pk}$. To achieve this, we used the output values measured using respective treatment devices (21EX, 21EX-S, and Novalis Tx) by medical physicists every month from September, 2012 to April, 2014. The output characteristics of treatment devices followed the IAEA TRS-398 guidelines, and the measurements included photon beams of 6 MV, 10 MV, and 15 MV and electron beams of 4 MeV, 6 MeV, 9 MeV, 12 MeV, 16MeV, and 20 MeV. The statistical analysis was done for the output characteristics measured, and was corrected every month. The width of control limit of weighting factors and measurement values were calculated as ${\lambda}=0.10$ and L=2.703, respectively; and the process capability indices $C_p$ and $C_{pk}$ were greater than or equal to 1 for all energies of the linear accelerators (21EX, 21EX-S, and Novalis Tx). Measured values of output doses with drastic and minor changes were found through the Shewhart-type chart and EWMA chart, respectively. The process capability indices $C_p$ and $C_{pk}$ of the treatment devices in our institution were, respectively, 2.384 and 2.136 for 21EX, 1.917 and 1.682 for 21EX-S, and 2.895 and 2.473 for Novalis Tx, proving that Novalis Tx has the most stable and accurate output characteristics.