• Title/Summary/Keyword: EVENODD

Search Result 3, Processing Time 0.014 seconds

Development of a Fault-tolerant IoT System Based on the EVENODD Method (EVENODD 방법 기반 결함허용 사물인터넷 시스템 개발)

  • Woo, Min-Woo;Park, KeeHyun;An, Donghyeok
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • The concept of Internet of Things (IoT) has been increasingly popular these days, and its areas of application have been broadened. However, if the data stored in an IoT system is damaged and cannot be recovered, our society would suffer considerable damages and chaos. Thus far, most of the studies on fault-tolerance have been focused on computer systems, and there has not been much research on fault-tolerance for IoT systems. In this study, therefore, a fault-tolerance method in IoT environments is proposed. In other words, based on the EVENODD method, one of the traditional fault-tolerance methods, a fault-tolerance storage and recovery method for the data stored in the IoT server is proposed, and the method is implemented on an oneM2M IoT system. The fault-tolerance method proposed in this paper consists of two phases - fault-tolerant data storage and recovery. In the fault-tolerant data storage phase, some F-T gateways are designated and fault-tolerant data are distributed in the F-T gateways' storage using the EVENODD method. In the fault-tolerant recovery phase, the IoT server initiates the recovery procedure after it receives fault-tolerant data from non-faulty F-T gateways. In other words, an EVENODD array is reconstructed and received data are merged to obtain the original data.

SSD-based RAID-6 System Architecture for Reliability and Performance Enhancement (신뢰성 향상과 성능개선을 위해 다양한 Erasure 코드를 적용한 SSD 기반 RAID-6 시스템 구조)

  • Song, Jae-Seok;Huh, Joon-Moo;Yang, Yu-Seok;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.47-56
    • /
    • 2010
  • HDD-based RAIDs have been used in high-capacity storage systems for traditional data server. However, their data reliability are relatively low and they consume lots of power since hard disk drive is weak on shock and its power consumption is high due to frequent spindle motor operation. Therefore, this paper presents new SSD based RAID system architecture using various erasure codes. The proposed methode applys Reed-Solomon, EVENODD, and Liberation coding schemes onto file system level and device driver level, respectively. Besides, it uses data allocation method to minimize the side effect of reducing the lifespan of SSD. Detail experimental results show that Liberation code increase wear-leveling rates of SSD based RAID-6 more than other codes. The SSD based RAID system applying erasure codes at the device driver level shows better performance than that at the file system level. I/O performance of RAID-6 system using SSD is 4.5%~8.5% higher than that of using HDD and the power consumption of the RAID system using SSD is 18%~40% less than that of using HDD.

De-duplication of Parity Disk in SSD-Based RAID System (SSD 기반의 RAID 시스템에서 패리티 디스크의 중복 제거)

  • Yang, Yu-Seok;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.105-113
    • /
    • 2013
  • RAID systems have been widely used by connecting several disks in parallel structure. to resolve the delay and bottleneck of data I/O. Recently, SSD based RAID systems are emerging since SSDs have better I/O performance than HDD. However, endurance and power consumption problems due to frequent write operation in SSD based RAID system should be resolved. In this paper, we propose a de-duplication method of parity disk in SSD based RAID system with expensive update cost. The proposed method segments chunk of parity data into small pieces and removes duplicate data, therefore, it can reduce wear-leveling and power consumption by decreasing write operation for duplicated parity data. Experimental results show that bit update rate of the proposed method is 16% in total disk, 31% in parity disk less than that of existing method in RAID-6 system using EVENODD erasure code, and the power consumption of the proposed method is 30% less than that of existing method. Besides the proposed method is 12% in total disk, 32% in parity disk less than that of existing method in RAID-5 system, and the power consumption of the proposed method is 36% less than that of existing method.