• Title/Summary/Keyword: EVAPOTRANSPIRATION

Search Result 779, Processing Time 0.032 seconds

On the determination of the maximum water requirement Stage and the net unit duty of water in the rice fields (논벼의 최대용수시기와 순단위용수량의 결정에 대하여)

  • 김철기;김재휘
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.4
    • /
    • pp.37-51
    • /
    • 1984
  • The purpose of this study is to find out the determination method of designed duty of water in the rice fields through the comparison of the net unit duty of water at the late reduction division to heading stage with that at the planting stage. The data used for analysing this problem are the data of precipitation and gauge evaporation observed by Cheong-ju Meterological Center, the coefficient of evapotranspiration by College of Agriculture, Chung Buk University and the data of transplanting progressing in Boun area. The results obtained from this analysis are summarized as follows. 1.The occurring year of 1/10 probability value for available precipitation, gauge evaporation and mean maximum daily evapotranspiration during growing season is the year of 1977. 2.The 1/10 probability values of mean maximum evapotranspiration per day under the production rate of 1, 400kg/l0a and 1, 500kg/10a based on the weight of dry matters are 9. 2mm/day and 9. 6mm/day, respectively. 3.The net unit duty of water required in the fields that the maximum planting rate exists is more than the one in the fields that the planting rate is uniform in the planting stage. 4.The determination of net unit duty of water in the late reduction division to heading stage or the planting stage depends upon the daily evapotranspiration and percolation rate in the late reduction division to heading stage or the water depth required for planting and daily consumptive use of water after planting at the planting stage. Therefore the use of figure 5-(1) to figure 5-(6) can easily make the determination of the designed net unit duty of water out of above two kinds of net unit duty of water.

  • PDF

Retrieval of Key Hydrological Parameters in the Yellow River Basin Using Remote Sensing Technique

  • Dong, Jiang;Jianhua, Wang;Xiaohuan, Yang;Naibin, Wang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.721-727
    • /
    • 2002
  • Precipitation evapotranspiration and runoff are three key parameters of regional water balance. Problems exist in the traditional methods for calculating such factors , such as explaining of the geographic rationality of spatial interpolating methods and lacking of enough observation stations in many important area for bad natural conditions. With the development of modern spatial info-techniques, new efficient shifts arose for traditional studies. Guided by theories on energy flow and materials exchange within Soil-Atmosphere-Plant Continuant (SPAC), retrieval models of key hydrological parameters were established in the Yellow River basin using CMS-5 and FengYun-2 meteorological satellite data. Precipitation and evapotranspiration were then estimated: (1) Estimating tile amount of solar energy that is absorbed by the ground with surface reflectivity, which is measured in the visible wavelength band (VIS): (2) Assessing the partitioning of the absorbed energy between sensible and latent heat with the surface temperature, which was measured in the thermal infrared band (TIR), the latent heat representing the evapotranspiration of water; (3) Clouds are identified and cloud top levels are classified using both VIS and TIR data. Hereafter precipitation will be calculated pixel by pixel with retrieval model. Daily results are first obtained, which are then processed to decade, monthly and yearly products. Precipitation model has been has been and tested with ground truth data; meanwhile, the evapotranspiration result has been verified with Large Aperture Scintillometry (LAS) presented by Wageningen University of the Netherlands. Further studies may concentrate on the application of models, i.e., establish a hydrological model of the Yellow river basin to make the accurate estimation of river volume and even monitor the whole hydrological progress.

  • PDF

GRID-based Daily Evapotranspiration Prediction Model (GRIDET) (격자기반의 일 증발산량 추정모형 개발)

  • Chae, Hyo-Seok;Kim, Seong-Jun;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.721-730
    • /
    • 1999
  • A Grid-based daily evapotranspiration(ET) prediction model which calculates temporal and spatial ET with a complementary relationship of Morton(1983) was developed. The model was programmed by C-language and uses ASCII formatted map data of DEM(Digital Elevation Model) and land use. Daily ET within the watershed is calculated and the results of temporal variations and spatial distributions of ET are presented by using GRASS(Geographic Resources Analysis Support System). To verify the applicability of the model, it was applied to the part of Bocheong stream basin (76.5$\textrm{km}^2$) located in the upstream of Dacheong Dam watershed. The result shows that the estimated evapotranspiration in 1995 was 766.1mm and 22% increased after correction radiation for slope and area.

  • PDF

Mapping of Areal Evapotranspiration by Remote Sensing and GIS Techniques (RS/GIS수법을 이용한 廣域蒸發散量의 추정)

  • 安忠鉉
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.1
    • /
    • pp.65-80
    • /
    • 1995
  • Remote Sensing data with ancillary ground-based meteorological data provides the capalility of computing threeof the four surface energy balance components(i.e. net radiation, soil heat flux and sensible heat flux) at different spatial and temporal scales. As a result, this enablis the estimation of the remaining term, latent heat flux. One of the practical applications with this approach is to produce evapotranspiration maps over large areas. This results could estimate and reproduce areal evapotranspiration over large area as much as several hundred sequare kilometers. Moreover, some calculating simulations for the effects of the land use change on the surface heat flux has been made by this method, which is able to estimate evapotranspiration under arbitracy presumed condition. From the simulation of land use change, the results suggests that the land use change in study area can be produce the significant changes in surface heat flux. This preliminary research suggests that the future research should involve development of methods to account for the variability of meteorological parameters brought about by changes in surface conditions and improvements in the modeling of sensible heat transfer across the surface atmosphere interface for partical canopy conditions using remote sensing information.

The remote-sensing based estimation of the evapotranspiration change due to the 2019 April Gangwon-do wildfire (2019년 강원도 산불로 인한 증발산 변화 원격탐사기반 추산)

  • Kim, JiHyun;Sohn, Soyoung;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.941-946
    • /
    • 2019
  • A wildfire could significantly alter the local hydrological regime, depending on the area and severity, and thus it is critical to understand its effect and feedback using data and simulation. For the wildfire in Gangwon-do on April 4-5, 2019, South Korea, we retrieved the Normalized-Burned Ratio (NBR) index using remote-sensing data (500-m 8-day MODIS surface reflectance data), and detect the damaged-area based on the difference in the NBR (dNBR) before and after the fire. The damaged area was $29.50km^2$ in total, taking up 1.00-6.19% of five catchments. We then used remote-sensing data (500-m 8-day MODIS evapotranspiration data) and estimated that annual evapotranspiration (AET) would decrease as 0.05-1.56% over the five catchments, as compared to the pre-fire AET (2004-2018). This study highlights the importance of improving our understanding about the impact of wildfire on the local hydrological cycle.

A study on the vulnerability of field water supply using public groundwater wells as irrigation in drought-vulnerable areas with a focus on the Dangjin-si, Yesan-gun, Cheongyang-gun, and Goesan-gun regions in South Korea

  • Shin, Hyung Jin;Lee, Jae Young;Jo, Sung Mun;Cha, Sang Sun;Hwang, Seon-Ah;Nam, Won-Ho;Park, Chan Gi
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.103-117
    • /
    • 2021
  • The severe effects of climate change, such as global warming and the El Niño phenomenon, have become more prevalent. In recent years, natural disasters such as drought, heavy rain, and typhoons have taken place, resulting in noticeable damage. Korea is affected by droughts that cause damage to rice fields and crops. Societal interest in droughts is growing, and measures are urgently needed to address their impacts. As the demand for high-quality agricultural products expands, farmers have become more interested in water management, and the demand for field irrigation is increasing. Therefore, we investigated water demand in the irrigation of drought-vulnerable crops. Specifically, we determined the water requirements for crops including cabbage, red pepper, apple, and bean in four regions by calculating the consumptive water use (evapotranspiration), effective rainfall, and irrigation capacity. The total consumptive water use (crop evapotranspiration) estimates for Dangjin-si (cabbage), Yesan-gun (apple), Cheongyang-gun (pepper) in Chungnam, and Goesan-gun (bean) in Chungbuk were 33.5, 206.4, 86.1, and 204.5 mm, respectively. The volumes of groundwater available in the four regions were determined to be the following: Dangjin-si, 4,968,000 m3; Yesan-gun, 4,300,000 m3; Cheongyang-gun, 1,114,000 m3, and Goesan-gun, 3,794,000 m3. The annual amounts available for the representative crops, compared to the amount of evapotranspiration, were 313.9% in Dangjin-si, 29.5% in Yesan-gun, 56.1% in Cheongyang-gun, and 20.1% in Goesan-gun.

Comparative Analysis of the 2022 Southern Agricultural Drought Using Evapotranspiration-Based ESI and EDDI (증발산 기반 ESI와 EDDI를 활용한 2022년 남부지역의 농업 가뭄 분석)

  • Park, Gwang-Su;Nam, Won-Ho;Lee, Hee-Jin;Sur, Chanyang;Ha, Tae-Hyun;Jo, Young-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.25-37
    • /
    • 2024
  • Global warming-induced drought inflicts significant socio-economic and environmental damage. In Korea, the persistent drought in the southern region since 2022 has severely affected water supplies, agriculture, forests, and ecosystems due to uneven precipitation distribution. To effectively prepare for and mitigate such impacts, it is imperative to develop proactive measures supported by early monitoring systems. In this study, we analyzed the spatiotemporal changes of multiple evapotranspiration-based drought indices, focusing on the flash drought event in the southern region in 2022. The indices included the Evaporative Demand Drought Index (EDDI), Standardized Precipitation Evapotranspiration Index (SPEI) considering precipitation and temperature, and the Evaporative Stress Index (ESI) based on satellite images. The Standardized Precipitation Index (SPI) and SPEI indices utilized temperature and precipitation data from meteorological observation stations, while the ESI index was based on satellite image data provided by the MODIS sensor on the Terra satellite. Additionally, we utilized the Evaporative Demand Drought Index (EDDI) provided by the North Oceanic and Atmospheric Administration (NOAA) as a supplementary index to ESI, enabling us to perform more effective drought monitoring. We compared the degree and extent of drought in the southern region through four drought indices, and analyzed the causes and effects of drought from various perspectives. Findings indicate that the ESI is more sensitive in detecting the timing and scope of drought, aligning closely with observed drought trends.

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (2) -Garlic and Cucumber- (밭작물소비수량에 관한 기초적 연구(II)-마늘 및 오이-)

  • 김철기;김진한;정하우;최홍규;권영헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study is to find out the basic data for irrigation plans of garlic and cucumber during the growing period, such as total amount of evapotranspiration, coefficients of evapotranspiration at each growth stage, the peak stage of evapotranspiration and the maximum evapotranspiraton, optimum irrigation point, total readily available moisture, and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation points with pP 1.7-2.1, pP 2.2-2.5, pP 2.6-2.8, for garlic and those with pP 1.9, pF 2.3, pP 2.7, for cucumber, soil textures of silty clay, sandy loam and sandy soil for both garlic and cucumber, with two replications. The results obtained are summarized as follows 1.There was the highest significant correlation between the avapotranspiration of garlic and cucumber and the pan evaporation, beyond all other meteorological factors considered, as mentioned in the previous paper. Therefore, the pan evaporation is enough to be used as a meteorological index measuring the quantity of evapotranspiration. 2.1/10 probability values of maximum total pan evaporation during growing period for garlic and cucumber were shown as 495.8mm and 406.8mm, respectively, and those of maximum ten day pan evaporation for garlic and cucumber, 63.8mm and 69.7mm, respectively. 3.The time that annual maximum of ten day pan evaporation can be occurred, exists at any stage between the middle of May and the late of June(harvest period) for garlic, and at any stage of growing period for cucumber. 4.The magnitude of evapotranspiration and of its coefficient for garlic and cucumber was occurred in the order of pF 1.7-2.1>pF 2.2-2.5>pF 2.6-2.8 and of pF 1.9>pF 2.3>pF2.7 respectively in aspect of irrigation point and of sandy loam>silty clay>sandy soil in aspect of soil texture for both garlic and cucumber. 5.The magnitude of leaf area index was shown in the order of pF 2.2-2.5>pF 1.7-2.1>pF 2.6-2.8 for garlic and of pF 1.9>pF 2.3>pF 2.7 for cucumber in aspect of irrigation point, and of sandy loam>sandy soil>silty clay in aspect of soil texture for both garlic and cucumber. 6.1/10 probability value of evapotranspiration and its coefficient during the growing period for garlic were shown as 391.7mm and 0.79 respectively, while those of cucumber, 423.lmm and 1.04 respectively. 7.The time the maximum evapotranspiration of garlic can be occurred is at the date of thirtieth before harvest period and the time for cucumber is presumed to be at the date of sixtieth to seventieth after transplanting, At that time, 1/10 probability value of ten day evapotranspiration and its coefficient for garlic is presumed to be 65.lmm and 1.02 respectively, while those of cucumber, 94.8mm and 1.36 respectively. 8.In aspect of irrigation point, the weight of raw garlic and cucumber were increased in the order of pF 2.2-2.5>pF 1.7-2.1>pF 2.6-2.8 and of pF 1.9>pF 2.3>pF 2.7 respectively. Therefore, optimum irrigation point for garlic and cucumber is presumed to be pF 2.2-2.5 and pF 1.9 respectively, when the significance of yield between the different irrigation treatments is considered. 9.Except the mulching period of garlic that soil moisture extraction patterns were about the same, those of garlic and cucumber have shown that maximum extraction rate exists at 7cm deep layer at the beginning stage after removing mulching for garlic and at the beginning stage of growth for cucumber and that extraction rates of 21cm to 35cm deep layer are increased as getting closer to the late stage of growth. 10.Total readily available moisture of garlic in silty clay, sandy loam, sandy soil become to be 18.71-24.96mm, 19.08-25.43mm, 10.35- 13.80mm respctively on the basis of the optimum irrigation point with pF 2.2-2.5, while that of cucumber, 11.8lmm, 12.03mm, 6.39mm respectively on the basis of the optimum irrigation point with pF 1.9. 11.The intervals of irrigation date of garlic and cucumber at the growth stage of maximum consumptive use become to be about three and a half days and one and a half days respectively, on the basis of each optimum irrgation point.

  • PDF

Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea (우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정)

  • Hwang, Seon-ah;Han, Kyung-hwa;Zhang, Yong-seon;Cho, Hee-rae;Ok, Jung-hun;Kim, Dong-Jin;Kim, Gi-sun;Jung, Kang-ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.238-249
    • /
    • 2019
  • The evapotranspiration is estimated based on weather factors such as temperature, wind speed and humidity, and the Hargreaves equation is a simple equation for calculating evapotranspiration using temperature data. However, the Hargreaves equation tends to be underestimated in areas with wind speeds above 3 m s-1 and overestimated in areas with high relative humidity. The study was conducted to determine Hargreaves equation coefficient in 82 regions in Korea by comparing evapotranspiration determined by modified Hargreaves equation and the Penman-Monteith equation for the time period of 2008~2018. The modified Hargreaves coefficients for 50 inland areas were estimated to be 0.00173~0.00232(average 0.00196), which is similar to or lower than the default value 0.0023. On the other hand, there are 32 coastal areas, and the modified coefficients ranged from 0.00185 to 0.00303(average 0.00234). The east coastal area was estimated to be similar to or higher than the default value, while the west and south coastal areas showed large deviations by area. As results of estimating the evapotranspiration by the modified Hargreaves coefficient, root mean square error(RMSE) is reduced from 0.634~1.394(average 0.857) to 0.466~1.328(average 0.701), and Nash-Sutcliffe Coefficient(NSC) increased from -0.159~0.837(average 0.647) to -0.053~0.910(average 0.755) compared with original Hargreaves equation. Therefore, we confirmed that the Hargreaves equation can be overestimated or underestimated compared to the Penman-Monteith equation, and expected that it will be able to calculate the high accuracy evapotranspiration using the modified Hargreaves equation. This study will contribute to water resources planning, irrigation schedule, and environmental management.

Poential evapotranspiration analysis of suweon area (수원지방(水原地方)의 증발산량(蒸發散量) 분석(分析))

  • Shin, Yong Hwa;Hwang, Gye Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 1976
  • This study is conducted to find out potential evapotranspiration values computed by a reasonable formula which is well suited among the existing ones for Suweon area. Each formula based on the data from Suweon Agricultural Meteorological Station during 1964 to 1973. Five formulas which are Blanney-Criddle, Thornthwaite, Penman, Jensen-Haise and Truc have been applied for calculation of potential evapotanspiration. Results obtained are summarized as follows. 1. Potential evapotranspiration of Suweon area shows uni-modal distribution which maximum value occurs in summer and minimum value occurs in winter. Annual potential evapotranspiration computed by Blanney-Criddle formula is 1,377 mm and that computed by others ranges from 714mm to 896mm. 2. Potential evapotranspiration computed by Blanney-Criddle formula is higher value than that computed by others, and among the other formulas it's values show little differences. However, relationships between the former and the mean of four others is highly correlated. 3. In comparison with potential evapotranspiration computed by formulas and actual evapotranspiration for rice paddy which is already reported, value for crop coefficient may be 0.8 in local varities, 1.0 in Tongil varity on Blanney-Criddle formula, and 1.2 in local varities and 1.5 in Tongil varity on the mean of four other fomulas. 4. Five formulas may applied for calculation of potential evapotranspiration because of relatively good correlation among them. However Blanney-Criddle formula is one of recommendable ones, because it is easy to compute and requires less data in compare with other formulas.

  • PDF