• Title/Summary/Keyword: ETRI

Search Result 9,860, Processing Time 0.034 seconds

Organic Thin Film-Transistor using Pentacene

  • Kim, Seong-Hyun;Hwang, Do-Hoon;Park, Heuk;Chu, Hye-Young;Lee, Jeong-Ik;Do, Lee-Mi;Zyung, Tae-Hyoung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.215-216
    • /
    • 2000
  • We fabricated the thin-film transistors using organic semiconductor, pentacene, on $SiN_x$, gate insulator. X-ray diffraction experiments were performed for the sample after heat-treatments at higher temperatures. We confirmed that we obtained "thin-film phase" from the condition used here. From the electrical measurements, we also confirmed that no charges are accumulated at the interface between organic and insulating layer, and FET characteristics of the organic FET using pentacene was discussed.

  • PDF

A Serial Input/Output Circuit with 8 bit and 16 bit Selection Modes

  • Yang, Yil-Suk;Kim, Jong-Dae;Roh, Tae-Moon;Lee, Dae-Woo;Koo, Jin-Gun;Kim, Sang-Gi;Park, Il-Yong;Yu, Byoung-Gon
    • ETRI Journal
    • /
    • v.24 no.6
    • /
    • pp.462-464
    • /
    • 2002
  • This paper presents a serial interface circuit that permits selection of the amount of data converted from serial-to-parallel and parallel-to-serial and overcomes the disadvantages of the conventional serial input/output interface. Based on the selected data length operating mode, 8 bit or 16 bit serial-to-parallel and 8 bit or 16 bit parallel-to-serial conversion takes place in data blocks of the selected data length.

  • PDF

Nanogap Array Fabrication Using Doubly Clamped Freestanding Silicon Nanowires and Angle Evaporations

  • Yu, Han-Young;Ah, Chil-Seong;Baek, In-Bok;Kim, An-Soon;Yang, Jong-Heon;Ahn, Chang-Guen;Park, Chan-Woo;Kim, Byung-Hoon
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.351-356
    • /
    • 2009
  • We present a simple semiconductor process to fabricate nanogap arrays for application in molecular electronics and nano-bio electronics using a combination of freestanding silicon nanowires and angle evaporation. The gap distance is modulated using the height of the silicon dioxide, the width of the Si nanowires, and the evaporation angle. In addition, we fabricate and apply the nanogap arrays in single-electron transistors using DNA-linked Au nanoparticles for the detection of DNA hybridization.