• Title/Summary/Keyword: ETEX

Search Result 11, Processing Time 0.021 seconds

Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper Oxya chinensis sinuosa

  • Kim, In-Woo;Markkandan, Kesavan;Lee, Joon Ha;Subramaniyam, Sathiyamoorthy;Yoo, Seungil;Park, Junhyung;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1863-1870
    • /
    • 2016
  • Antimicrobial peptides/proteins (AMPs) are present in all types of organisms, from microbes and plants to vertebrates and invertebrates such as insects. The grasshopper Oxya chinensis sinuosa is an insect species that is widely consumed around the world for its broad medicinal value. However, the lack of available genetic information for this species is an obstacle to understanding the full potential of its AMPs. Analysis of the O. chinensis sinuosa transcriptome and expression profile is essential for extending the available genetic information resources. In this study, we determined the whole-body transcriptome of O. chinensis sinuosa and analyzed the potential AMPs induced by bacterial immunization. A high-throughput RNA-Seq approach generated 94,348 contigs and 66,555 unigenes. Of these unigenes, 36,032 (54.14%) matched known proteins in the NCBI database in a BLAST search. Functional analysis demonstrated that 38,219 unigenes were clustered into 5,499 gene ontology terms. In addition, 26 cDNAs encoding novel AMPs were identified by an in silico approach using public databases. Our transcriptome dataset and AMP profile greatly improve our understanding of O. chinensis sinuosa genetics and provide a huge number of gene sequences for further study, including genes of known importance and genes of unknown function.

How Many SNPs Should Be Used for the Human Phylogeny of Highly Related Ethnicities? A Case of Pan Asian 63 Ethnicities

  • Ghang, Ho-Young;Han, Young-Joo;Jeong, Sang-Jin;Bhak, Jong;Lee, Sung-Hoon;Kim, Tae-Hyung;Kim, Chul-Hong;Kim, Sang-Soo;Al-Mulla, Fahd;Youn, Chan-Hyun;Yoo, Hyang-Sook;The HUGO Pan-Asian SNP Consortium, The HUGO Pan-Asian SNP Consortium
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.181-188
    • /
    • 2011
  • In planning a model-based phylogenic study for highly related ethnic data, the SNP marker number is an important factor to determine for relationship inferences. Genotype frequency data, utilizing a sub sampling method, from 63 Pan Asian ethnic groups was used for determining the minimum SNP number required to establish such relationships. Bootstrap random sub-samplings were done from 5.6K PASNPi SNP data. DA distance was calculated and neighbour-joining trees were drawn with every re-sampling data set. Consensus trees were made with the same 100 sub-samples and bootstrap proportions were calculated. The tree consistency to the one obtained from the whole marker set, improved with increasing marker numbers. The bootstrap proportions became reliable when more than 7,000 SNPs were used at a time. Within highly related ethnic groups, the minimum SNPs number for a robust neighbor-joining tree inference was about 7,000 for a 95% bootstrap support.

Validation of the Long-Range Atmospheric Dispersion Model (장거리 대기 확산모델 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • A long-range atmospheric dispersion model named LADAS has been developed to understand the characteristics of the transport and diffusion of radioactive materials released into atmosphere. The developed numerical model for validation was compared with the results of the ETEX which is the long-range field tracer experiment. As a comparative study, the calculated concentration distributions agreed well in the case of the usage of the mixing heights calculated by the Richardson number than the usage of the constant mixing heights in LADAS model. Also, the calculated concentrations agreed with the time series of the measured ones at some sampling points.

Genome-Wide Analysis of DNA Methylation before- and after Exercise in the Thoroughbred Horse with MeDIP-Seq

  • Gim, Jeong-An;Hong, Chang Pyo;Kim, Dae-Soo;Moon, Jae-Woo;Choi, Yuri;Eo, Jungwoo;Kwon, Yun-Jeong;Lee, Ja-Rang;Jung, Yi-Deun;Bae, Jin-Han;Choi, Bong-Hwan;Ko, Junsu;Song, Sanghoon;Ahn, Kung;Ha, Hong-Seok;Yang, Young Mok;Lee, Hak-Kyo;Park, Kyung-Do;Do, Kyoung-Tag;Han, Kyudong;Yi, Joo Mi;Cha, Hee-Jae;Ayarpadikannan, Selvam;Cho, Byung-Wook;Bhak, Jong;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.210-220
    • /
    • 2015
  • Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethy-lated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.

Recapitulation of Genome-wide Association Study on Chronic Periodontitis in a Korean Population

  • Park, Bo-Ruem;Ma, Jae-Kyung;Park, Kwang-Bum;Hong, Kyung-Won
    • Biomedical Science Letters
    • /
    • v.23 no.2
    • /
    • pp.133-137
    • /
    • 2017
  • Periodontitis is the major causation of tooth loss in the elderly population. Multiple risk factors include oral microorganisms, smoking, metabolic syndrome, and genetic factors influence periodontitis development. In this study, we conducted a replication study of using previous Korean GWAS results by examining an independent population. The study population was recruited from Mir Dental Clinic, Daegu, Korea. In total, 93 samples were evaluated from July 2016 to January 2017. The sample groups include relatively older patients (>60 years) with no periodontitis (n = 31) and relatively younger patients (range 40~60 years) with severe periodontitis (n = 62). A total of seven markers which were previously reported to be associated with periodontitis were genotyped. Among the seven SNPs, rs16846206 and rs2392510 showed a significant association by logistic regression analysis and Chi square test, respectively. The former SNP showed significant association with severe periodontitis, whereas this study also showed same tendency in which individuals with the minor allele are significantly more frequent in cases than those in controls. The SNP is located on a coding gene (SLC9C2), where the alanine residue 505 is replaced by glycine (Ala505Gly). The later SNP was significant when differed between case and control groups, but there was no significance by logistic regression analysis when controlled for age and sex as covariant. Although the study population size examined in the current study was relatively smaller compared to previous studies, our results implicated that at least the two SNPs (rs16846206 and rs2392510) might be important candidates for the further genetic study.

Development of Simple Sequence Repeat Markers from Adenophora triphylla var. japonica (Regel) H. Hara using Next Generation Sequencing (차세대염기서열분석법을 이용한 잔대의 SSR 마커 개발)

  • Park, Ki Chan;Kim, Young Guk;Hwangbo, Kyeong;Gil, Jinsu;Chung, Hee;Park, Sin Gi;Hong, Chang Pyo;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.411-417
    • /
    • 2017
  • Background: Adenophora triphylla var. japonica (Regel) H. Hara shows vegetative growth with radical leaves during the first year and shows reproductive growth with cauline leaves and bolting during the second year. In addition, the shape of the plant varies within the same species. For this reason, there are limitations to classifying the species by visual examination. However, there is not sufficient genetic information or molecular tools to analyze the genetic diversity of the plant. Methods and Results: Approximately 34.59 Gbp of raw data containing 342,487,502 reads was obtained from next generation sequencing (NGS) and these reads were assembled into 357,211 scaffolds. A total of 84,106 simple sequence repeat (SSR) regions were identified and 14,133 primer sets were designed. From the designed primer sets, 95 were randomly selected and were applied to the genomic DNA which was extracted from five plants and pooled. Thirty-nine primer sets showing more than two bands were finally selected as SSR markers, and were used for the genetic relationship analysis. Conclusions: The 39 novel SSR markers developed in this study could be used for the genetic diversity analysis, variety identification, new variety development and molecular breeding of A. triphylla.

Genome-Wide Identification and Classification of MicroRNAs Derived from Repetitive Elements

  • Gim, Jeong-An;Ha, Hong-Seok;Ahn, Kung;Kim, Dae-Soo;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • MicroRNAs (miRNAs) are known for their role in mRNA silencing via interference pathways. Repetitive elements (REs) share several characteristics with endogenous precursor miRNAs. In this study, 406 previously identified and 1,494 novel RE-derived miRNAs were sorted from the GENCODE v.19 database using the RepeatMasker program. They were divided into six major types, based on their genomic structure. More novel RE-derived miRNAs were confirmed than identified as RE-derived miRNAs. In conclusion, many miRNAs have not yet been identified, most of which are derived from REs.

Morphological Characteristics and Genetic Diversity Analysis of Platycodon grandiflorum (Jacq.) A. DC Determined Using SSR Markers (도라지 수집종의 형태적 특성과 SSR마커에 의한 유연관계 분석)

  • Um, Yurry;Lee, Yi;Jin, Mei-Lan;Lee, Dae Young;Lee, Jae Won;Kim, Geum Soog;Kim, Chang Kug;Hong, Chang Pyo;Kim, Ok Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Background : Plant breeding requires the collection of genetically diverse genetic resources. Studies on the characteristics of Platycodon grandiflorum resources have not been carried out so far. The present study was carried out to discriminate P. grandiflorum based on morphological characteristics and genetic diversity using simple sequence repeat (SSR) markers. Methods and Results :We collected 11 P. grandiflorum cultivars: Maries II, Hakone double white, Hakone double blue, Fuji white, Fuji pink, Fuji blue, Astra white, Astra pink, Astra blue, Astra semi-double blue and Jangbaek. Analyses of the morphological characteristics of the collection were conducted for aerial parts (flower, stem and leaf) and underground parts (root). Next, the genetic diversity of all P. grandiflorum resources was analyzed using SSR markers employing the DNA fragment analysis method. We determined that the 11 P. grandiflorum cultivars analyzed could be classified by plant length, leaf number and root characteristic. Based on the genetic diversity analysis, these cultivars were classified into four distinct groups. Conclusions : These findings could be used for further research on cultivar development using molecular breeding techniques and for conservation of the genetic diversity of P. grandiflorum. Moreover, the markers could be used for genetic mapping of the plant and marker-assisted selection for crop breeding.