• Title/Summary/Keyword: ETBE

Search Result 13, Processing Time 0.028 seconds

Synthesis of TAME, ETBE, and MTBE Using Heteropolyacid Catalyst (헤테로폴리산 촉매를 이용한 TAME, ETBE 및 MTBE 합성반응의 연구)

  • Park, Jin-Hwa;Yi, Yong-Woo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.582-588
    • /
    • 1997
  • Synthetic reaction of TAME, ETBE, and MTBE compounds used largely for gasoline octane number enhancer to prevent air pollution was investigated using heteropolyacid catalyst in a fixed bed flow reactor. In the synthetic reaction of TAME, ETBE and MTBE, after hetero atom being replaced with poly atom, the activity of the catalyst, $H_4SiW_{12}O_{40}$ with coordinated bond with W and an hetero atom of Si was the highest among the catalysts tested. Also the activity depended upon the metals replaced which are related to the catalyst acidity. $FeHPW_{12}O_{40}$ and $K_3PM_{o12}O_{40}$ catalysts showed high activity in TAME synthesis, while they were not effective in ETBE and MTBE synthesis. In this study catalysts showing high activity were selected and mixed with equal weight combination of $H_4SiW_{12}O_{40}$ and $Sr_2SiW_{12}O_{40}$ ;$H_4SiW_{12}O_{40}$ and $NaH_2PW_{12}O_{40}$ ; $Fe_{1.5}PW_{12}O_{40}$ and $Mg_2SiW_{12}O_{40}$ ; $Mg_2SiW_{12}O_{40}$ and $Ba_2SiW_{12}O_{40}$. The mixed heteropolyacid catalysts showed higher TBA conversion rate and better selectivity of ETBE and MTBE than the single catalysts.

  • PDF

Characteristics of Heteropoly Acid Catalyst for the Synthesis of ETBE(Ethyl Tert-Butyl Ether) (ETBE(Ethyl Tert-Butyl Ether) 합성에 대한 헤테로폴리산 촉매의 특성)

  • Park, Nam-Cook;Shin, Jae-Soon;Seo, Seong-Gyu;Lim, Yeoung-Taek;Kim, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1994
  • Reaction characteristics and correlations between the acidic property and catalytic activity of heteropoly acid catalyst on ETBE synthesis as a gasoline octane enhancer were investigated. The amount of pyridine adsorbed on heteropoly acid catalyst and catalytic activity in the synthesis of ETBE showed a good correlation. But ammonia failed to show such a correlation because of the complex formation of ammonia adsorbed and transition metal ions. In the case of supported catalyst catalytic activity and product distribution were mainly affected by the adsorption characteristics of TBA or iso-butene.

  • PDF

Synthesis of ETBE as an Octane Enhancer for Gasoline over Macroreticular Robin Catalysts (그물구조 수지 촉매상에서 가솔린 옥탄가 향상제인 ETBE 합성)

  • Park, Jin-Hwa;Lee, Jin-Hyung;Kim, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.825-835
    • /
    • 1994
  • Synthesis of ETBE as an octane number enhancer from ethanol and isobutene in a flow reactor under atmospheric pressure was studied. Amberlyst-15 and Amberlyst XN-1010 were used as catalysts within the temperature range of $70-140^{\circ}C$. The activity of Amberlyst 15 was higher than that of Amberlyst XN-1010. The reaction rate data obtained under differential reactor condition were tested by a linear regression method to determine the reaction mechanism and kinetic parameters. The ETBE synthesis reaction seems to be proceeded via the LHHW(Langmuir-Hinshelwood-Hougen-Watson) machanism. The activation energy of the surface reaction was estimated by the reaction rate constants as well as the adsorption equilibrium constants. Apparent activation energies are 18.64 and 24.19kcal/mol for Amberlyst-15 and Amberlyst XN-1010, respectively.

  • PDF

Solid Acid Catalyzed Formation of ETBE(Ethyl tert-Butyl Ether) as an Octane Enhancer for Gasoline (고체산 촉매에 의한 가솔린 옥탄가 향상제인 ETBE (Ethyl tert-Butyl Ether) 합성)

  • Park, Nam-Cook;Kim, Jae-Seung;Seo, Seong-Gyu;Oh, Young-Yenl
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.162-170
    • /
    • 1993
  • Vapor-phase ETBE(ethyl tert-butyl ether) synthesis from TBA(tert-butyl alcohol) and ethanol was carried over solid acid catalysts such as heteropoly acids and proton type zeolites. Heteropoly acids were more active than proton type zeolites and $H_4SiW_{12}O_{40}$ catalyst showed about the same activity as Amberlyst-15 ion exchange resin catalyst used as an industrial catalyst in ETBE synthesis. The catalytic activity of transition metal exchanged heteropoly acids was greatly enhanced, because new acid site was generated with hydrogen reduction. This effect of hydrogen reduction was related to the reduction characteristics of catalysts and the order of reducibility was $Ag^+$>$Cu^{2+}$>$Fe^{2+}$.

  • PDF

The Characteristics Study of Vehicle Evaporative Emission and Performance according to the Bio-Fuel Application (바이오 연료 적용에 따른 차량 증발가스 및 성능특성 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Kim, Sin;Park, Cheon-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.874-882
    • /
    • 2017
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotiv e and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward three main issues : evaporative, performance, air pollution. In addition, researcher studied the environment problems of the bio-ethanol, bio-butanol, bio-ETBE (Ethyl Tertiary Butyl Ether), MTBE (Methyl Tert iary Butyl Ether) fuel contained in the fuel as octane number improver. The researchers have many dat a about the health effects of ingestion of octane number improver. However, the data support the con clusion that octane number improver is a potential human carcinogen at high doses. Based on the bio-fuel and octane number improver types (bio-ethanol, bio-butanol, bio-ETBE, MTBE), this paper dis cussed the influence of gasoline fuel properties on the evaporative emission characteristics. Also, this p aper assessed the acceleration and power performance of gasoline vehicle for the bio-fuel property. As a result of the experiment, it was found that all the test fuels meet the domestic exhaust gas standards, and as a result of measurement of the vapor pressure of the test fuels, the bio - ethanol : 15 kPa and the biobutanol : 1.6 kPa. thus when manufacturing E3 fuel, Increasing the biobutanol content reduces evaporation gas and vapor pressure. In addition, Similar accelerating and powering performance was shown for the type of biofuel and when bio-butanol and bio-ethanol were compared accelerated perf ormance was improved by about 3.9% and vehicle power by 0.8%.

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 2. Exhaust and Non-regulated, PM emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 2. 배출가스 및 미규제 물질, 입자상 물질 특성)

  • Lee, Min-Ho;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.374-384
    • /
    • 2016
  • Concern about air pollution is gradually rising up in domestic and foreign, automotive and fuel researchers are trying to reduce vehicle exhaust emissions, through a lot of approaches, which consist of new engine design and innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research is proceeding by two main issues : exhaust emissions and PM particle emissions of gasoline vehicle. Exhaust emissions, non-regulated emissions and PM (particulate matter) particles of automotive are causing many problems which ambient pollution and harmful effects on the human body. The main particulate fraction of automotive exhaust emissions consists of small particles. Because of their small size, inhaled particles can easily penetrate deep into the lungs. The rough surfaces of these particles make it easier for them to combine with other toxins in the environment. Thus, the hazards of particle inhalation are increased. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline vehicle exhaust emissions, non-regulated emissions and nano-particle emissions. Also, this paper assessed exhaust emission characteristics at 2 type test modes. The test modes were FTP-75 and HWFET. All measurement items be verified less than the value of regulated emissions. It could be known difference increase and decrease by each measurement item depending on increase the oxygen contents.

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 1. Fuel properties and evaporative emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 1. 연료물성 및 증발가스 배출 특성)

  • Lee, Min-Ho;Kim, Jong-Ryeol;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.118-128
    • /
    • 2016
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emission and PM (particulate matter) particle emissions of gasoline vehicle. Exhaust emission and PM particle of automotive had many problem that cause of ambient pollution, health effects. In addition, researcher studied the environment problems of the MTBE contained in the fuel as oxygenate additives. The researchers have many data about the health effects of ingestion of MTBE. However, the data support the conclusion that MTBE is a potential human carcinogen at high doses. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline fuel properties and evaporative emission characteristics. Also, this paper assessed the acceleration and power performance of gasoline vehicle for the fuel property.

An Assessment of the Feasibility of (I) : Condition of Aerobic (MTBE를 포함한 기타 가솔린 첨가제의 생 분해 적용 가능성 평가(I) : 호기성 조건)

  • Chung, Woo-jin;Chang, Soon-woong
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.757-766
    • /
    • 2016
  • MTBE and other gasoline additives contained in gasoline are known to be a refractory substance resistant to biodegradation. As a method of removing these substances, a research of method using native microbes of polluted soil was progressed and among these, bio-degradation possibility under aerobic condition was evaluated. All of the experiments were progressed based on batch experiment of lab scale and analyzed by GC-FID using HS-SPME technique. The result of bio-degradation experiment based on MTBE and other additives(ETBE, TAME) was observed below 1 mg/L, which initial concentration were 100 mg/L for each method. And through production of by-product and CO2, partial mineralization was confirmed. Degradation velocity of each additive was promptly represented in the order of TBA>ETBE>MTBE>TAME. Through this study, bio-degradation possibility of native microbes of oil polluted soil, MTBE and other gasoline additives was confirmed and it was considered that the result could be used for basic experiment data in removing oil pollutants of soil.

Concentration of Alcohols in Dilute Aqueous Solution by Pervaporation (투과증발을 이용한 알코올 농축)

  • 임군택;김현일;김성수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.113-116
    • /
    • 1998
  • 1. 서론 : 투과증발을 이용한 분리공정은 현재 산업적으로 다양하게 응용되고 있다. 사탕수수에서 발효, 증류된 93%에탄올을 99.8% 이상의 무수에탄올로 농축하기 위해 물을 탈수하는 공정이 이미 상업화되어 있으며, 또, 반도체 웨이퍼나 LCD세정제로 사용되는 IPA 회수공정, 폐수나 대기중에 함유된 방향족, 염소계 탄화수소 등의 휘발성 유기성분(VOC)을 제거, 회수하는 유기물 농축공정에도 사용되고 이밖에 기존의 증류로 분리하기 힘들고, 에너지 사용량이 높은 유사한 유기혼합물의 분리에 사용되며 현재 메탄올/MTBE 및 에탄올/ETBE등의 혼합물을 분리하기 위해 투과증발 시스템 개발이 진행되고 있다. (생략)

  • PDF

Biodegradation Study of Gasoline Oxygenates by Butane-Utilizing Microorganisms (부탄 분해 미생물을 이용한 휘발유 첨가제의 분해특성)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this study, potential degradation of MTBE and other gasoline oxygenates by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using butane as the sources of carbon and energy was examined and compared. Butane monooxygenases(BMO) of butane-grown ENV425 and mixed culture generated 1-butanol as a major metabolite of butane oxidation and addition of acetylene, specific inhibitor of monooxygenase, inhibited both butane oxidation and 1-butanol production. The results described in this study suggest that alkanes including propane, pentane, and butane are effectively utilized as a growth substrate to oxidize MTBE cometabolically. And also BTEX compounds could be the potential substrate of the MTBE cometabolism. Cell density also affected on the MTBE degradation and transformation capacity(Tc). Increasing cell density caused increasing MTBE degradation but decreased transformation capacity. Other result demonstrated that MTBE and other gasoline oxygenates, ETBE and TAME, were degraded by butane-grown microorganism.