• Title/Summary/Keyword: EST clustering

Search Result 17, Processing Time 0.022 seconds

Identification of a Novel Gene by EST Clustering and its Expression in Mouse Ovary and Testis (EST Clustering 방법으로 동정한 새로운 유전자의 생쥐 난소 및 정소에서의 발현)

  • Hwang, Sang-Joon;Park, Chang-Eun;Hwang, Kyu-Chan;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.4
    • /
    • pp.253-263
    • /
    • 2006
  • Objective: Identification of the regulatory mechanism for arrest and initiation of primordial follicular growth is crucial for female fertility. Previously, we found 15 expressed sequence tags (ESTs) that were specifically abundant in the day-S-subtracted cDNA library and that the B357 clone was novel. The present study was conducted to obtain the whole sequence of the novel gene including B357 and to characterize its mRNA and protein expression in mouse ovary and testis. Methods: The extended sequence of the 2,965-bp cDNA fragment for the clone B357 was named ${\underline{5}}-{\underline{d}}ay-{\underline{o}}vary-{\underline{s}}pecific\;gene-{\underline{1}}$ (5DOS1) and submitted to GenBank (accession number ${\underline{AY751521}}$). Expression of 5DOS1 was characterized in both female and male gonads at various developmental stages by Northern blotting, real-time RT-PCR, in situ hybridization, Western blotting, and immunohistochemistry. Results: The 5DOS1 transcript was highly expressed in the adult testis, brain, and muscle as compared to the other tissues. In the ovary, the 5DOS1 transcript was detected in all oocytes from primordial to antral follicles, and highly expressed at day 5 after birth and decreased thereafter. In contrast, expression of 5DOS1 showed a gradual increase during testicular development and its expression was limited to various stages of male germ cells except spermatogonia. Conclusions: This is the first report on the expression and characterization of the 5DOS1 gene in the mouse gonads. Further functional analysis of the 5DOS1 protein will be required to predict its role in gametogenesis.

Survey of Expressed Sequence Tags from Tissue-Specific cDNA Libraries in Hemibarbus mylodon, an Endangered Fish Species (멸종위기 어류 어름치 Hemibarbus mylodon (Cypriniformes)로부터 조직별 EST library 제작 및 발현 유전자 탐색)

  • Bang, In-Chul;Lim, Yoon-Hee;Cho, Young-Sun;Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Journal of Aquaculture
    • /
    • v.20 no.4
    • /
    • pp.248-254
    • /
    • 2007
  • Representative cDNA libraries were constructed from various tissue sources of Hemibarbus mylodon, an endangered freshwater fish species in Korea, for the mining of expressed sequence tags (ESTs). Randomized and non-normalized EST analysis was performed with 7 unidirectional cDNA libraries generated from brain, intestine, kidney, liver, muscle, ovary or testis. Of 3,383 ESTs in total, the number of singleton was 2,029, and 333 contigs containing 1,354 ESTs were assembled (percent of unigene = 70.0%). Abundantly expressed gene transcripts and broad clustering of putative gene function were tissue-specific in general, and the redundancy was also variable among those libraries. Over half of H. mylodon ESTs were matched with orthologues from other teleosts among which zebrafish gene sequences were the most frequent in those matches. This initial setting of EST libraries achieved in the present study would be a fundamental basis for the banking of gene resources from this endangered fish species.

EST Analysis system for panning gene

  • Hur, Cheol-Goo;Lim, So-Hyung;Goh, Sung-Ho;Shin, Min-Su;Cho, Hwan-Gue
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.21-22
    • /
    • 2000
  • Expressed sequence tags (EFTs) are the partial segments of cDNA produced from 5 or 3 single-pass sequencing of cDNA clones, error-prone and generated in highly redundant sets. Advancement and expansion of Genomics made biologists to generate huge amount of ESTs from variety of organisms-human, microorganisms as well as plants, and the cumulated number of ESTs is over 5.3 million, As the EST data being accumulate more rapidly, it becomes bigger that the needs of the EST analysis tools for extraction of biological meaning from EST data. Among the several needs of EST analyses, the extraction of protein sequence or functional motifs from ESTs are important for the identification of their function in vivo. To accomplish that purpose the precise and accurate identification of the region where the coding sequences (CDSs) is a crucial problem to solve primarily, and it will be helpful to extract and detect of genuine CD5s and protein motifs from EST collections. Although several public tools are available for EST analysis, there is not any one to accomplish the object. Furthermore, they are not targeted to the plant ESTs but human or microorganism. Thus, to correspond the urgent needs of collaborators deals with plant ESTs and to establish the analysis system to be used as general-purpose public software we constructed the pipelined-EST analysis system by integration of public software components. The software we used are as follows - Phred/Cross-match for the quality control and vector screening, NCBI Blast for the similarity searching, ICATools for the EST clustering, Phrap for EST contig assembly, and BLOCKS/Prosite for protein motif searching. The sample data set used for the construction and verification of this system was 1,386 ESTs from human intrathymic T-cells that verified using UniGene and Nr database of NCBI. The approach for the extraction of CDSs from sample data set was carried out by comparison between sample data and protein sequences/motif database, determining matched protein sequences/motifs that agree with our defined parameters, and extracting the regions that shows similarities. In recent future, in addition to these components, it is supposed to be also integrated into our system and served that the software for the peptide mass spectrometry fingerprint analysis, one of the proteomics fields. This pipelined-EST analysis system will extend our knowledge on the plant ESTs and proteins by identification of unknown-genes.

  • PDF

Species-specific Expression of Rpia Transcript in Cumulus-oocyte-complex (난자-난구세포 복합체에서 발현하는 Rpia 유전자의 종 특이적 발현)

  • Kim, Yun-Sun;Yoon, Se-Jin;Kim, Eun-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2007
  • Objective: We previously identified differentially expressed genes (DEGs) between germinal vesicle (GV) and metaphase II (MII) mouse oocyte. The present study was accomplished as a preliminary study to elucidate the role of ribose 5-phosphate isomerase A (Rpia), the essential enzyme of the pentose phosphate pathway (PPP), in oocyte maturation. We observed expression of Rpia in the mouse and porcine oocytes. Methods: Expression pattern of the 11 MII-selective DEGs in various tissues was evaluated using RT-PCR and selected 4 genes highly expressed in the ovary. According to the oocyte-selective expression profile, we selected Rpia as a target for this study. We identified the porcine Rpia sequence using EST clustering technique, since it is not yet registered in public databases. Results: The extended porcine Rpia nucleotide sequence was submitted and registered to GenBank (accession number EF213106). We prepared primers for porcine Rpia according to this sequence. In contrast to the oocyte-specific expression in the mouse, Rpia was expressed in porcine cumulus and granulosa cells as well as in oocytes. Conclusion: This is the first report on the characterization of the Rpia gene in the mouse and porcine ovarian cells. Results of the present study suggest that the mouse and porcine COCs employ different mechanism of glucose metabolism. Therefore, the different metabolic pathways during in vitro oocyte maturation (IVM) in different species may lead different maturation rates. It is required to study further regarding the role of Rpia in glucose metabolism of oocytes and follicular cell fore exploring the regulatory mechanism of oocyte maturation as well as for finding the finest culture conditions for in vitro maturation.

An EST survey of genes expressed in liver of rock bream(Oplegnathus fasciatus) with particular interests on the stress-responsive and immune-related genes

  • Park, Byul-Nim;Park, Ji-Eun;Kim, Ki-Hong;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.43-43
    • /
    • 2003
  • EST analysis was performed to identify stress-responsive and immune-related genes from rock bream (Oplegnathus fasciatus). cDNA libraries were constructed with liver and randomly chosen 624 clones were subjected to automated sequence analysis. Of 624 clones sequenced in total, approximately 15% of ESTs was novel sequences (no match to GenBank) or sequences with high homology to hypothetical/unknown genes. The bioinforamtic sequence analysis including functional clustering, homology grouping, contig assembly with electronic northern and organism matches were carried out. Several potential stress-responsive biomarker and/or immune-related genes were identified in all the tissues examined. It included lectins, ferritins, CP450, proteinase, proteinase inhibitors, anti-oxidant enzymes, various heat-shock proteins, warm temperature acclimation protein, complements, methyltransferase, zinc finger proteins, lysozymes, macrophage maturation associated protein, and others. This information will offer new possibilities as fundamental baseline data for understanding and addressing their molecular mechanism involved in host defense and immune systems of this species.

  • PDF

EST-SSR Based Genetic Diversity and Population Structure among Korean Landraces of Foxtail Millet (Setaria italica L.)

  • Ali, Asjad;Choi, Yu-Mi;Do, Yoon-Hyun;Lee, Sukyeung;Oh, Sejong;Park, Hong-Jae;Cho, Yang-Hee;Lee, Myung Chul
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.322-330
    • /
    • 2016
  • Understanding the genetic variation among landrace collections is important for crop improvement and utilization of valuable genetic resources. The present study was carried out to analyse the genetic diversity and associated population structure of 621 foxtail millet accessions of Korean landraces using 22 EST-SSR markers. A total of 121 alleles were detected from all accessions with an average of 5.5 alleles per microsatellite locus. The average values of gene diversity, polymorphism information content, and expected heterozygosity were 0.518, 0.594, and 0.034, respectively. Following the unweighted neighbor-joining method with arithmetic mean based clustering using binary data of polymorphic markers, the genotypes were grouped into 3 clusters, and population structure analysis also separated into 3 populations. Principal coordinate analysis (PCoA) explained a variation of 13.88% and 10.99% by first and second coordinates, respectively. However, in PCoA analysis, clear population-level clusters could not be found. This pattern of distribution might be the result of gene flow via germplasm exchanges in nearby regions. The results indicate that these Korean landraces of foxtail millet exhibit a moderate level of diversity. This study demonstrated that molecular marker strategies could contribute to a better understanding of the genetic structure in foxtail millet germplasm, and provides potentially useful information for developing conservation and breeding strategies.

Construction of Web-Based Database for Anisakis Research (고래회충 연구를 위한 웹기반 데이터베이스 구축)

  • Lee, Yong-Seok;Baek, Moon-Ki;Jo, Yong-Hun;Kang, Se-Won;Lee, Jae-Bong;Han, Yeon-Soo;Cha, Hee-Jae;Yu, Hak-Sun;Ock, Mee-Sun
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.411-415
    • /
    • 2010
  • Anisakis simplex is one of the parasitic nematodes, and has a complex life cycle in crustaceans, fish, squid or whale. When people eat under-processed or raw fish, it causes anisakidosis and also plays a critical role in inducing serious allergic reactions in humans. However, no web-based database on A. simplex at the level of DNA or protein has been so far reported. In this context, we constructed a web-based database for Anisakis research. To build up the web-based database for Anisakis research, we proceeded with the following measures: First, sequences of order Ascaridida were downloaded and translated into the multifasta format which was stored as database for stand-alone BLAST. Second, all of the nucleotide and EST sequences were clustered and assembled. And EST sequences were translated into amino acid sequences for Nuclear Localization Signal prediction. In addition, we added the vector, E. coli, and repeat sequences into the database to confirm a potential contamination. The web-based database gave us several advantages. Only data that agrees with the nucleotide sequences directly related with the order Ascaridida can be found and retrieved when searching BLAST. It is also very convenient to confirm contamination when making the cDNA or genomic library from Anisakis. Furthermore, BLAST results on the Anisakis sequence information can be quickly accessed. Taken together, the Web-based database on A. simplex will be valuable in developing species specific PCR markers and in studying SNP in A. simplex-related researches in the future.

SSR-Primer Generator: A Tool for Finding Simple Sequence Repeats and Designing SSR-Primers

  • Hong, Chang-Pyo;Choi, Su-Ryun;Lim, Yong-Pyo
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.189-193
    • /
    • 2011
  • Simple sequence repeats (SSRs) are ubiquitous short tandem duplications found within eukaryotic genomes. Their length variability and abundance throughout the genome has led them to be widely used as molecular markers for crop-breeding programs, facilitating the use of marker-assisted selection as well as estimation of genetic population structure. Here, we report a software application, "SSR-Primer Generator " for SSR discovery, SSR-primer design, and homology-based search of in silico amplicons from a DNA sequence dataset. On submission of multiple FASTA-format DNA sequences, those analyses are batch processed in a Java runtime environment (JRE) platform, in a pipeline, and the resulting data are visualized in HTML tabular format. This application will be a useful tool for reducing the time and costs associated with the development and application of SSR markers.