• 제목/요약/키워드: ESS optimal operation

검색결과 44건 처리시간 0.019초

PV-BESS 시스템의 적정 PCS, 배터리용량 산정에 따른 최적 운영에 관한 연구 (A Study on the Optimal Operation According to Appropriate PCS and Battery Capacity Estimation of PV-BESS System)

  • 최윤석;나승유
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1174-1180
    • /
    • 2018
  • In December 2017, the government announced plans to increase the current proportion of renewable energy from 7% to 20% by 2030 through a plan called the Renewable Energy 3020 Implementation Plan. Therefore, the demand for installation of photovoltaic(PV), wind turbine(WT) and battery energy storage system(BESS) is expected to increase. In particular, the system combined with energy storage system(ESS) is expected to take up a large portion since PV and WT can receive high renewable energy certificates(REC) weights when combined with ESS. In this study, we calculate the optimal capacity of the power conditioning system(PCS) and the BESS by comparing the economical efficiency and maximize the efficiency of the PV-BESS system in which the PV and the BESS are connected. By analyzing the system marginal price(SMP) and REC, it maximize profits through application of REC weight 5.0 and optimal charge-discharge scheduling according to the SMP changes.

수명감소를 고려한 주파수 조정용 에너지저장장치의 최적 클러스터링 (Optimal Clustering of Energy Storage System for Frequency Regulation Service Considering Life Degradation)

  • 김욱원;김진오
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.555-560
    • /
    • 2016
  • Recently, many countries have placed great attention on energy security and climate changes. Governments are promoting the construction of renewable energy projects with regulatory support in Korea. Despite an increasing penetration of renewable resources, however, the photovoltaic and wind power are underutilized due to the endemic problems such as difficulties of output control and intermittent output. The Energy Storage System (ESS) is proposed as a good solution for solving the problems and has been studied in both the private business and the government. However, because of inefficient aspects, the research has been carried out for improving high costs and a small capacity. In addition, the ESS is currently installed for using only one purpose which is frequency regulation or transmission congestion relief such that has an economic limitation. Therefore, methods which are becoming economically justifiable to increase the penetration of the ESS is required. Thus, this paper presents in terms of operation efficiency to improve economic feasibility of the ESS currently used. mainly, there are two aspects for the operation efficiency. Firstly, it is intended to improve the utilization rate through a process that can utilize the ESS for various purposes. It is necessary to be able to use for other purposes by classifying and clustering for increasing the efficiency of availability. The clustering method is proposed to conduct the grouping the ESS. Especially, it is proposed to utilize ESS for frequency regulation service which is the one of ancillary services in the power system. Through case studies, it is confirmed to secure the necessary resources by clustering small size ESS.

Operation Planning of Reserve in Microgrid Considering Market Participation and Energy Storage System

  • Lee, Si Young;Jin, Young Gyu;Kim, Sun Kyo;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1089-1095
    • /
    • 2014
  • Innumerable microgrids would be operated independently by individual operators in a future smart grid. This kind of decentralized power system requires entirely different operation scheme in the actual power system and electricity market operation. Especially, frequency regulation is very important for successive energy trade in this multi-microgrid circumstance. This paper presents an optimal energy and reserve market participation strategy and operation strategy of energy storage system (ESS) by a microgrid operator (MGO). For definite evaluation of the proposed strategy, we postulate that the MGO should participate in the Power Exchange for Frequency Control (PXFC) market, which was devised by Maria Ilic and her coworkers and is suitable to the decentralized operation circumstances. In particular, optimal reserve capacity of the frequency control market and optimal market participation ratio of ESS between frequency control market and energy market are derived theoretically and evaluated by simulations utilizing Nordic Pool Elspot price data.

Real-time Optimal Operation Planning of Isolated Microgrid Considering SOC balance of ESS

  • Lee, Yoon Cheol;Shim, Ji Yeon;Kim, Jeongmin;Ryu, Kwang Ryel
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.57-63
    • /
    • 2018
  • The operating system for an isolated microgrid, which is completely disconnected from the central power system, aims at preventing blackouts and minimizing power generation costs of diesel generators through efficient operation of the energy storage system (ESS) that stores energy produced by renewable energy generators and diesel generators. In this paper, we predict the amount of renewable energy generation using the weather forecast and build an optimal diesel power generation plan using a genetic algorithm. In order to avoid inefficiency due to inaccurate prediction of renewable energy generation, our search algorithm imposes penalty on candidate diesel power generation plans that fail to maintain the SOC (state of charge) of ESS at an appropriate level. Simulation experiments show that our optimization method for maintaining an appropriate SOC balance can prevent the blackout better when compared with the previous method.

Optimal Energy Shift Scheduling Algorithm for Energy Storage Considering Efficiency Model

  • Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1864-1873
    • /
    • 2018
  • Energy shifting is an innovative method used to obtain the highest profit from the operation of energy storage systems (ESS) by controlling the charge and discharge schedules according to the electricity prices in a given period. Therefore, in this study, we propose an optimal charge and discharge scheduling method that performs energy shift operations derived from an ESS efficiency model. The efficiency model reflects the construction of power conversion systems (PCSs) and lithium battery systems (LBSs) according to the rated discharge time of a MWh-scale ESS. The PCS model was based on measurement data from a real system, whereas for the LBS, we used a circuit model that is appropriate for the MWh scale. In addition, this paper presents the application of a genetic algorithm to obtain the optimal charge and discharge schedules. This development represents a novel evolutionary computation method and aims to find an optimal solution that does not modify the total energy volume for the scheduling process. This optimal charge and discharge scheduling method was verified by various case studies, while the model was used to realize a higher profit than that realized using other scheduling methods.

마이크로그리드(MG)의 설계를 위한 에너지저장장치(ESS)의 최소용량산정 기법에 관한 연구 (A Study on the Method to Evaluate Minimum Capacity of Energy Storage System(ESS) for Micro-Grid Design)

  • 이재걸;신정훈;최영도;남수철;김태균
    • 조명전기설비학회논문지
    • /
    • 제23권10호
    • /
    • pp.52-58
    • /
    • 2009
  • 본 논문에서는 마이크로그리드(Micro grid, MG)의 설계에서 필요로 되는 에너지저장장치(Energy storage system, ESS)의 최소설비용량을 산정할 수 있는 확률론적 방법론을 제시하였다. ESS기술은 아직까지 경제성 측면에서 매우 높은 설비비용이 필요로 되기 때문에 적정 설비규모를 산정하는 것과 MG의 안정적인 운영을 위해서 최소 설비용량에 대한 가이드라인의 제시가 필요로 된다. 본 논문에서 제시한 방법론은 Non-dispatchable 발전원 출력의 간헐성과 모든 발전기의 고장정지확률을 고려하여 MG가 자체적인 에너지 Self balancing을 유지할 수 있는 ESS의 최소설비용량을 산정할 수 있는 것을 특징으로 한다.

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Sattarpour, Tohid;Tousi, Behrouz
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권6호
    • /
    • pp.350-358
    • /
    • 2017
  • Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

연축전지와 리튬이온전지용 하이브리드 ESS의 최적구성방안에 관한 연구 (A Study on Estimation Method for Optimal Composition Rate of Hybrid ESS Using Lead-acid and Lithium-ion Batteries)

  • 박수영;유상원;박재범;김병기;김미영;노대석
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.962-968
    • /
    • 2016
  • The large scaled lead-acid battery is widely used for efficient operation of the photovoltaic system in many islands. However, lithium-ion battery is now being introduced to mitigate the fluctuation of wind power and to replace lead-acid battery. Therefore, hybrid ESS(Energy Storage system) that combines lithium-ion battery with lead-acid battery is being required because lithium-ion battery is costly in present stage. Under this circumstance, this paper presents the optimal algorithm to create composition rate of hybrid ESS by considering fixed and variable costs in order to maximize advantage of each battery. With minimization of total cost including fixed and variable costs, the optimal composition rate can be calculated based on the various scenarios such as load variation, life cycle and cost trend. From simulation results, it is confirmed that the proposed algorithms are an effective tool to produce a optimal composition rate.

변동부하 공급을 위한 하이브리드 ESS의 연축전지와 리튬이온전지의 최적구성방안에 관한 연구 (A Study on Optimal Configuration Method of Hybrid ESS using Lead-acid and Lithium-ion Batteries for Supply of Variation Loads)

  • 노대석;최성식;이후동;장병훈;김수열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.49-54
    • /
    • 2016
  • 현재 대부분의 도서지역에서는 태양광발전을 효율적으로 운용하기 위하여 대용량 연축전지가 많이 사용되고 있지만, 풍력발전의 도입, 축전지 교체로 인하여 리튬이온전지의 도입이 증가하고 있다. 따라서 본 논문에서는 기존에 많이 보급되어 사용되고 있는 연축전지와 리튬이온전지의 장점을 최대한 활용하기 위하여, 연축전지와 리튬이온전지용 하이브리드 ESS의 최적 운용평가를 할 수 있는 알고리즘을 제시하였다. 상기의 알고리즘을 이용하여 시뮬레이션을 수행한 결과, 각 전지의 도입비용과 운용비용이 최소화 되는 운용조건에서 최적구성비를 산출하였다. 이에 따라 본 논문에서 제안한 하이브리드 ESS의 최적구성 알고리즘에 대한 유용성을 확인하였다.

1MWh급 레독스흐름전지의 부하이전용 최적운전에 따른 전기요금 절감효과 분석 (Analysis of Electricity Cost Saving Effect by the Optimal load shifting Operation with 1MWh Redox Flow Battery)

  • 백자현;고은영;강태혁;이한상;조수환
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1151-1160
    • /
    • 2016
  • In recent years, the energy storage systems such as LiB, NaS, RFB(Redox-Flow Battery), Super- capacitor, pumped hydro storage, flywheel, CAES(Compressed Air Energy Storage) and so on have received great attention as practical solutions for the power supply problems. They can be used for various purpose of peak shaving, load leveling and frequency regulation, according to the characteristics of each ESS(energy storage system). This paper will focus at 1 MWh RFB system, which is being developed through the original technology project of energy material. The output of ESS is mainly characterized by C-rate, which means that the total rated capacity of battery will be delivered in 1 hour. And it is a very important factor in the ESS operation scheduling. There can be several options according to the operation intervals 15, 30 and 60minutes. The operation scheduling is based on the optimization to minimize the daily electricity cost. This paper analyzes the cost-saving effects by the each operating time-interval in case that the RFB ESS is optimally scheduled for peak shaving and load leveling.