• Title/Summary/Keyword: ESS 화재

Search Result 27, Processing Time 0.029 seconds

A Study on the Fire Risk of ESS through Fire Status and Field Investigation (화재현황 및 현장조사를 통한 ESS의 화재 위험성 연구)

  • Park, Kwang-Muk;Kim, Jae-Hyun;Park, Jin-Yeong;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.91-99
    • /
    • 2018
  • Recently, the spread of ESS in Korea has increased and a fire accident has also occurred. By July 2018, there were a total of 7 cases. All 7 cases were ESS systems consisting of lithium-ion batteries and were burned down. Both the automatic fire extinguisher and the fire department were not able to digest. In this paper, the characteristics of ESS fire are analyzed based on recent ESS fire situation and field investigation, and the cause of fire is divided into environmental, electrical and thermal factors. As a result, it was found that the ESS fire was correlated with the installation environment of the system. In the domestic and overseas lithium ion battery test standard and ESS facility standard survey, the trends and differences of domestic and overseas facilities standards were identified. Based on the fire status and field investigationy, and domestic and overseas facility standard survey, measures were suggested to prevent and prevent the spread of fire in ESS fire.

Fire Protection, Facility Improvement and Protections for FR ESS (FR ESS 의 화재 예방, 설비 개선 및 보호 기술 현장 적용)

  • Lee, Ilyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • 한국전력공사 전력연구원에서는 2018 년 고창 전력시험센터에서 최초 화재 발생 이후, ESS 시스템의 화재 발생 원인에 대한 분석 및 실증시험을 수행하였으며, 이를 통해 현장에서 화재 발생을 최소화할 수 있는 다양한 설비개선안을 도출하였다. 도출된 설비개선안을 통하여 기술지원 요청 부서에서는 전국의 모든 현장 적용을 시행하고 있으며, 이를 통하여 한전이 보유한 모든 ESS 설비는 2021 년 내재 가동될 예정이다.

A Study on the Development of Fire Extinguishing Agent and Extinguishing System for ESS Fire (ESS 화재전용 소화약제 및 소화시스템 개발에 관한 연구)

  • Lee, Yeon-Ho;Lee, Joo-Hyung;Kim, Soo-Jin;Chon, Sung-Ho;Choi, Byoung-Chul;Oh, Seung-Ju;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 2020
  • This paper presents a study on the development of a fire extinguishing agent and extinguishing system for an energy storage system (ESS) fire. The fire extinguishing agent designed to extinguish an ESS fire is a highly permeable fire extinguisher that reduces the surface tension and viscosity while bringing about cooling action. This is the main extinguishing effect of this type of wetting agent, which displays the characteristics of fire extinguishing agents used for penetrating the battery cells inside the ESS module. For the fire extinguishing system, a local application system was designed to suppress fire on a rack-by-rack basis. A 360° rotating nozzle was inserted into the rear hall of the ESS module, and general nozzles were installed in the rack to maximize the fire extinguishing effect. The fire extinguishing agent was strongly discharged by virtue of the gas release pressure. Experiments on fire suppression performance with ESS module 1 unit and module 3 units showed that all visible flames were extinguished in 8 s and 9 s, respectively, by the fire extinguishing agent. In addition, based on confirming reignition for 600 s after the fire extinguishing agent was exhausted, it was confirmed that the ESS fire was completely extinguished without reignition in all fire suppression performance experiments.

A Study to Prevent the Occurrence and Spread of Fire Caused by ESS Storage (ESS 저장창고로 인한 화재의 발생 및 확산방지를 위한 연구)

  • Shin, Joung Hyeon;Jo, Su Yeon;Kim, Geon-Woo;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.140-141
    • /
    • 2021
  • ESS refers to a device that can store electrical energy produced by renewable energy generation, etc. and use it when necessary. Lithium-ion batteries are composed of high energy density and combustible electrolyte, so once ignited, it is difficult to extinguish. Many studies have been conducted to solve the problem of the battery itself as the cause of the fire. However, there is also a problem with the structure in which ESS(hereinafter referred to as ESS storage) is installed itself. Therefore, the purpose of this paper is to provide data to solve the problems related to ignition and fire spread due to the problem of ESS storage. In summer, the internal temperature of the ESS storage rises due to solar radiation to trigger a fire, so it is necessary to prevent an internal temperature rise due to solar radiation. Research on standards, materials used, structures, etc. for ESS storage and new regulations are required.

  • PDF

Relative degradation grade Estimation based on Fuzzy logic algorithm for ESS battery fire protection (ESS 배터리 화재 방지를 위한 Fuzzy Logic 기반 상대적 퇴화도 추정 기법 연구)

  • Kim, Suan;Han, Dongho;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.441-442
    • /
    • 2019
  • 최근 ESS 배터리의 화재로 이를 사전에 방지할 수 있는 알고리즘의 중요성이 부각되고 있다. 본 논문에서는 배터리 퇴화 실험 결과 프로파일에서 특성을 보여 퇴화 factor로 선정한 배터리 내부 저항, 방전 용량을 입력으로 하여 이를 Fuzzy Logic으로 구현하여 배터리의 퇴화 상태를 추정한다.

  • PDF

A Study on Protection Method of Energy Storage System for Lithium-ion Battery Using Surge Protection Device(SPD) (SPD를 이용한 리튬이온전지용 전기저장장치의 보호방안에 관한 연구)

  • Hwang, Seung-Wook;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.568-574
    • /
    • 2020
  • Recently, the installation of energy storage systems (ESSs) that have a range of functions, such as power stabilization of renewable energy sources, demand control, and frequency regulation, has been increasing annually. On the other hand, since the fire accident of ESS occurred at Gochang Power Test Center in August 2017, 29 fire accidents with significant property losses have occurred, including the Gyeongsan substation and Kunsan PV power plant. Because these fire accidents of ESS are arisen regardless of the season and capacity of ESS, an analysis of the fault characteristics in ESS is required to confirm the causes of the fire accidents accurately and ensure the safety of the ESS. This paper proposes the modeling of ESS using PSCAD/EMTDC S/W to identify the fault characteristics and ensure the safety of the ESS. From the simulation results of fault characteristics based on various scenarios, it is clear that the insulation of ESS may be breakdown due to the largely occurring CMV (common mode voltage). Furthermore, the CMV between the PCS and battery can be reduced, and the insulation breakdown of ESS can be prevented if an SPD (surge protect device) is installed in the battery and PCS sides, respectively.

Study on Improvement of Dew Point within ESS Container for Fire Prevention (컨테이너형 ESS 화재방지를 위한 내부 응결점 개선 관한 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Giseok
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.165-174
    • /
    • 2019
  • Purpose: In this study, we investigated the relationship between the causes of ESS container fire accidents. Method: We investigated the possibility of reducing the container fire accident by improving the air environment of the container which is necessary for improvement of these. Result: Through this study, we can be confirmed that the condensing condition of water in the air caused by the difference of internal and external temperature is improved and the dielectric strength of BMS board is reduced. Conclusion: The correlation between the BMS board condensation and the dielectric strength was confirmed.

Analysis of the Cell Balancing Effect on the ESS Fire by Simulating the Euljiro 3-ga Subway ESS (을지로 3가 지하철 ESS를 모의한 ESS 화재에서 Cell Balancing이 미치는 영향성 분석)

  • Yun, Sang-Sun;Kee, Seok-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2020
  • Given the change in the energy market, large energy storage systems (ESS) is rapidly entering the market. In this rapid spread, fire accidents are becoming an issue. This study attempts to approach the fire from the system point of view to analyze the problems caused by bonding from different perspectives. Moreover, to conduct this study, the fabrication of real objects is dangerous, which needs to be verified through simulation. In this study, we approach the cause of fire that occurs in large-capacity ESS from the system perspective. We focus on determining the effects of cell balancing performed on the BMS after charging. Thus, we analyze the cell balancing behavior and the linkage risks to the various stacks. The study also explores why no fire occurs during 70% operation.

A Study on the Identification Technique and Prevention of Combustion Diffusion through ESS (Energy Storage System) Battery Fire Case (ESS (에너지 저장장치) 배터리 화재사례를 통한 감식기법 및 연소 확산방지에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.383-391
    • /
    • 2020
  • Purpose: To identify internal self ignition and ignition caused by external flames in energy storage rooms, and to analyze the difference between ignition due to overheating and ignition caused by external heat sources. Method: membrane melting point measurement, battery external hydrothermal experiment, battery overcharge experiment, comparative analysis of electrode plate during combustion by overcharge and external heat, overcharge combustion characteristics, external hydrothermal fire combustion characteristics, 3.4 (electrode plate comparison) / 3.5 (overcharge) /3.6 (external sequence) analysis experiment. Result: Since the temperature difference was very different depending on the position of the sensor until the fire occurred, it is judged that two temperature sensors per module are not enough to prevent the fire through temperature control in advance. Conclusion: The short circuit acts as an ignition source and ignites the mixed gas, causing a gas explosion. The electrode breaks finely due to the explosion pressure, and the powder-like lithium oxide is sparked like a firecracker by the flame reaction.

Trends in safety improvement technologies for an electric propulsion system of eco-friendly ships (친환경 선박용 전기추진시스템 안전성 향상 기술개발 동향)

  • Kim, Sehwan;Choi, Gilsu;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.556-564
    • /
    • 2021
  • This paper presents trends of safety improvement technologies for an electric propulsion system of eco-friendly ships. As an effort to reduce a green house effect, demands for eco-friendly ships have been increased. An energy storage system (ESS) is one of key systems in an eco-friendly ship and a lithium-ion battery generally used in an ESS system due to its high power density and efficiency. However, a lithium-ion battery is considered as one of reasons for ESS fire hazard. Since a fire extinguishing facility is especially limited in the ocean, safety issue in an eco-friendly ship is important. In this paper, recent safety improvement technologies for traction motors, ESS batteries and structures for eco-friendly ships are presented.