• Title/Summary/Keyword: ESS(Energy Saving System)

Search Result 33, Processing Time 0.038 seconds

A Study on ESS-based Clean Energy, Smart Home IoT Platform (ESS기반 클린에너지, 스마트홈 IoT 플랫폼 연구)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.147-152
    • /
    • 2018
  • This study investigates the demand management and energy saving plan of the apartment house based on the ESS (: Energy Storage System), which is the main equipment in the field of electric power energy efficiency, and suggests standardization for various technical factors and operation. It contributes to the spread of ESS industry. In addition, to create ESS market for apartment houses and smart homes, housing IoT technology is used to integrate apartment houses with smart home-based ESS and it is possible to achieve use efficiency and economic feasibility of power users, We will study a business model that can reconsider the acceptability of power users.

A Study on Effects of Energy Saving by Applying Energy Storage System (에너지저장시스템 적용에 의한 에너지절감 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.582-589
    • /
    • 2009
  • The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Up to 45% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system, here after) stores the energy generated during braking and discharges it again when a vehicle accelerates. The ESS is able to store and discharge energy extremely quickly, consequently enabling a complete exchange of energy between vehicles, even if they are not braking and accelerating at precisely the same time, as is most frequently the case in everyday service. The energy saving rate is related to the headway. If the headway is long/short, the energy saving goes up/down, When the headway is short, the ESS can not save much regenerative energy. The headway of SeoulMetro line 2 as the worst case is very short in Korea urban transit system. So, the energy saving rate will be very low. If the ESSs are applied to another railway system, we can expect that the effectiveness is better than the results of SeoulMetro line 2. This paper presents effects of energy saving obtained by applying the ESS to SeoulMetro line 2.

Analysis of Electricity Cost Saving Effect by the Optimal load shifting Operation with 1MWh Redox Flow Battery (1MWh급 레독스흐름전지의 부하이전용 최적운전에 따른 전기요금 절감효과 분석)

  • Baek, Ja-Hyun;Ko, Eun-Young;Kang, Tae-Hyuk;Lee, Han-Sang;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1151-1160
    • /
    • 2016
  • In recent years, the energy storage systems such as LiB, NaS, RFB(Redox-Flow Battery), Super- capacitor, pumped hydro storage, flywheel, CAES(Compressed Air Energy Storage) and so on have received great attention as practical solutions for the power supply problems. They can be used for various purpose of peak shaving, load leveling and frequency regulation, according to the characteristics of each ESS(energy storage system). This paper will focus at 1 MWh RFB system, which is being developed through the original technology project of energy material. The output of ESS is mainly characterized by C-rate, which means that the total rated capacity of battery will be delivered in 1 hour. And it is a very important factor in the ESS operation scheduling. There can be several options according to the operation intervals 15, 30 and 60minutes. The operation scheduling is based on the optimization to minimize the daily electricity cost. This paper analyzes the cost-saving effects by the each operating time-interval in case that the RFB ESS is optimally scheduled for peak shaving and load leveling.

A Economic Feasibility Analysis of Energy Saving Technology Application to Underground Subway Station

  • Kim, Hyungchul;Shin, Seungkwon;Jung, Hosung;Kim, Jin-o;Cha, Junmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.36-40
    • /
    • 2015
  • In Korea, new total energy-saving solution has planned to build test-bed in underground subway station. Breaking energy is one of the most energy saving method in railway, but it has not be fully used up for economical purpose. This paper demonstrates on energy saving technology application including breaking energy and heating energy to underground subway station. It also offer solution of optimization of power energy flow. Moreover, economic feasibility analysis performed for undergound test bed constuction.

Planning ESS Managemt Pattern Algorithm for Saving Energy Through Predicting the Amount of Photovoltaic Generation

  • Shin, Seung-Uk;Park, Jeong-Min;Moon, Eun-A
    • Journal of Integrative Natural Science
    • /
    • v.12 no.1
    • /
    • pp.20-23
    • /
    • 2019
  • Demand response is usually operated through using the power rates and incentives. Demand management based on power charges is the most rational and efficient demand management method, and such methods include rolling base charges with peak time, sliding scaling charges depending on time, sliding scaling charges depending on seasons, and nighttime power charges. Search for other methods to stimulate resources on demand by actively deriving the demand reaction of loads to increase the energy efficiency of loads. In this paper, ESS algorithm for saving energy based on predicting the amount of solar power generation that can be used for buildings with small loads not under electrical grid.

Methodology and Guidelines for Selecting Measurement Boundaries and Influence Variables for Analyzing and Evaluating Energy Usage in Demonstration ESS-Based Distribution and Logistics Facilities (실증 ESS 기반 유통 물류시설의 에너지 사용량 분석 및 평가를 위한 측정경계와 영향변수 선정 방법론 및 가이드라인)

  • Jung, Kicheol;Kwon, Dongmyung;Choi, Okhwan;Go, Myungchan
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.61-67
    • /
    • 2020
  • ESS-based buildings are being widely studied as an effective methods for saving energy with ZEB, BEMS, and FEMS. However, in large scale buildings, there are many energy-consuming facilities, so it is necessary to identify important energy-consuming facilities to build a real-time measurement system. In addition, there are a myriad of factors that affect the dependent variable of energy use, therefore there is a limitation that effective energy management is difficult. Therefore, this study applied the measurement boundary setting methodology according to the energy supply status through due diligence for the demonstration ESS distribution logistics facility, and suggested the methodolgy for presenting priority for the construction of the measurement system. Afterwards, the impact variables that Acting as an independent variable affecting the energy consumption of the distribution and logistics facilities were categorized into intrinsic and meteorological variables. Lastly, all factors that could affect the energy consumption of the actual distribution and logistics facilities, were classified and presented as guidelines list. By applying the results of this study, it is possible to build a monitoring system at a low cost and high efficiency in a distribution and logistics facility with a complex structure. And by identifying the main independent variables for the measured energy consumption, effectively identifying trends in energy consumption and deriving saving points It is expected to be able to operate the ESS-based infrastructure.

Study for the Relations between Electric Multiple Unit and Energy Storage System (에너지저장시스템과 도시철도 차량의 상관관계에 관한 연구)

  • Lee, Heui-Seon;Baek, Seoung-Gil;Kwon, Kyoung-Min;Kim, Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2998-3006
    • /
    • 2011
  • This paper is about the relations between the electric multiple unit and ESS(Energy Storage system, here after) applying bi-direction Buck-Boost Converter. ESS may be possible to suppress the line voltage drops and the power loading fluctuations and to save the regeneration power lapses. This paper confirm for simulation that ESS reusing regenerative power generated during braking in train. Also, presents the influence of regenerative power variation of train and catenary acceptability for energy saving obtained by applying the ESS to Daejeon Metro line 1.

  • PDF

Energy Saving based on HVACS (HVACS 기반의 에너지 절감 연구)

  • Oh, Jin-Seok;Kim, Min-Wook;Lee, Jong-Hak;Oh, Ji-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.925-934
    • /
    • 2020
  • In order to improve the energy efficiency of ships, this study designed an energy saving system (ESS) algorithm suitable for ship operation characteristics, and analyzed energy consumption patterns based on the operation characteristics of ships equipped with specific systems. Therefore, we intend to study techniques that can reduce the cost of operation. To this end, we intend to study to implement an efficient system that can increase energy efficiency that reflects the characteristics of the propulsion system of the ship based on the power generation system. The vessel to be researched is intended to conduct research on HVACS (Heating, Ventilation and Air Conditioning) mounted on LNG carriers, and based on this, it has energy with scalability to be applied to future-based vessels such as electric propulsion ships and autonomous ships. I would like to propose a savings technique.

A Study on an Evaluation Modeling of Power System Performance for Frequency Regulation ESS Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 주파수조정용 ESS의 계통영향성 평가 모델링에 관한 연구)

  • Choi, Sung-Sik;Kang, Min-Kwan;Lee, Hu-Dong;Nam, Yang-Hyun;Park, Ji-Hyun;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1024-1030
    • /
    • 2018
  • Recently, the large scaled energy storage system(ESS) which has various functions such as peak saving, demand management, output stabilization of renewable energy and frequency regulation(FR) is being energetically installed and operated. Especially, as the use case of frequency regulation ESS, the KEPCO has demonstrated the total of 376[MW] ESS since 2014. However, there are no operational experiences and international technical standards on frequency regulation application in ESS. Therefore, this paper propose the evaluation algorithm for power system performance of ESS by considering the frequency characteristics between governor of existing generator and frequency regulation ESS, in order to verify the power system performance of ESS. And also, this paper propose an evaluation modeling for small scaled power system including the existing generator, frequency control ESS and customer loads based on the PSCAD/EMTDC S/W. From the simulation results in 360[MW] model power system, it is confirmed that frequency regulation ESS has better performances than conventional generators.

A Study on Economic Analysis Algorithm for Energy Storage System Considering Peak Reduction and a Special Tariff (피크저감과 특례요금제를 고려한 ESS 경제성 분석 알고리즘에 관한 연구)

  • Son, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1278-1285
    • /
    • 2018
  • For saving electricity bill, energy storage system(ESS) is being installed in factories, public building and commercial building with a Time-of-Use(TOU) tariff which consists of demand charge(KRW/kW) and energy charge(KRW/kWh). However, both of peak reduction and ESS special tariff are not considered in an analysis of initial cost payback period(ICPP) on ESS. Since it is difficult to reflect base rate by an amount of uncertain peak demand reduction during mid-peak and on-peak periods in the future days. Therefore, the ICPP on ESS can be increased. Based on this background, this paper presents the advanced analysis method for the ICPP on ESS. In the proposed algorithm, the representative days of monthly electricity consumption pattern for the amount of peak reduction can be found by the k­means clustering algorithm. Moreover, the total expected energy costs of representative days are minimized by optimal daily ESS operation considering both peak reduction and the special tariff through a mixed-integer linear programming(MILP). And then, the amount of peak reduction becomes a value that the sum of the expected energy costs for 12 months is maximum. The annual benefit cost is decided by the amount of annual peak reduction. Two simulation cases are considered in this study, which one only considers the special tariff and another considers both of the special tariff and amount of peak reduction. The ICPP in the proposed method is shortened by 18 months compared to the conventional method.