• Title/Summary/Keyword: ESC(Electronic Stability Control)

Search Result 26, Processing Time 0.033 seconds

Processing Time Optimization of an Electronic Stability Control system design Using Multi-Cores for AURIX TC 275 (AURIX TC 275에서 멀티코어를 이용한 Electronic Stability Control의 수행시간 최적화)

  • Jang, Hong-Soon;Cho, Young-Hwan;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.385-393
    • /
    • 2021
  • This study proposes a multi-core-based controller design for an ESC(Electronic Stability Control) system in an automotive multi-core processor. Considering the architectures of an automotive multi-core processor and an ESC system, the overall execution time has been optimized for multi-core platforms. The function module assignment, synchronization between cores, and memory assignment for core-dependent variables in automotive multi-core systems are evaluated. The ESC controller comprising five function modules is used herein. Based on the proposed design, the single-core controller is extended to multi-core controllers. Using multi-core optimization methods, such as function module assignment, semaphore, interrupt awakening, and variable assignment over cores, the ESC system is redesigned to a multi-core controller. Experimental results reveal that the execution time for the multi-core processor is reduced by 59.7% compared with that for the single-core processor.

Proposal for Using Sine with Dwell for the Evaluation of ESC for Medium Commercial Vehicles (중형 상용차량 ESC 평가를 위한 Sine with Dwell Test 제안)

  • Kwon, Baeksoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.32-38
    • /
    • 2015
  • A sine with dwell test is well known as a test scenario for evaluation of performance of electronic stability control(ESC) on passenger vehicles and heavy commercial vehicles. However, when it comes to ESC for medium commercial vehicles, the test scenario has not been established yet. In this paper, the sine with dwell test was modified considering characteristics of medium commercial vehicles. The three main modifications of the original test scenario are the steering angle level, steering frequency, and loading condition of the vehicle. These modifications are derived from simulation study for different medium commercial vehicles. From simulation study, it was shown that the ESC system for medium commercial vehicle is objectively evaluated by the proposed test scenario. A clear improvement on vehicle stability was seen in the results when ESC system was used.

Integrated Chassis Control with Electronic Stability Control and Active Front Steering under Saturation of Front Lateral Tire Forces (전륜 횡력의 포화를 고려한 ESC와 AFS의 통합 섀시 제어)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • This article presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under saturation of front lateral tire force. Regardless of the use of AFS, the front lateral tire forces can be easily saturated. Under the saturated front lateral tire force, AFS cannot be effective to generate a control yaw moment needed for the integrated chassis control. In this paper, new integrated chassis control is proposed in order to limit the use of AFS in case the front lateral tire force is saturated. Weighed pseudo-inverse control allocation (WPCA) with variable weight is adopted to adaptively use the AFS. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From simulation, the proposed integrated chassis control is effective for vehicle stability control under saturated front lateral tire force.

Optimum Yaw Moment Distribution with Electronic Stability Control and Active Rear Steering (자세 제어 장치와 능동 후륜 조향을 이용한 최적 요 모멘트 분배)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1246-1251
    • /
    • 2014
  • This article presents an optimum yaw moment distribution scheme for a vehicle with electronic stability control (ESC) and active rear steering (ARS). After computing the control yaw moment in the yaw moment controller, it should be distributed into tire forces, generated by ESC and ARS. In this paper, yaw moment distribution is formulated as an optimization problem. New objective function is proposed to tune the relative magnitudes of the tire forces. Weighed pseudo-inverse control allocation (WPCA) is adopted to solve the problem. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From the simulation, the proposed optimum yaw moment distribution scheme is shown to effective for vehicle stability control.

Evaluation of electronic stability controllers using hardware-in-the-loop vehicle simulator

  • Emirler, Mumin Tolga;Gozu, Murat;Uygan, Ismail Meric Can;Boke, Tevfik Ali;Guvenc, Bilin Aksun;Guvenc, Levent
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.123-141
    • /
    • 2018
  • Hardware-in-the-loop (HiL) simulation is a very powerful tool to design, test and verify automotive control systems. However, well-validated and high degree of freedom vehicle models have to be utilized in these simulations in order to obtain realistic results. In this paper, a vehicle dynamics model developed in the Carsim Real Time program environment and its validation has been performed using experimental results. The developed Carsim real time model has been employed in the Tofas R&D hardware-in-the-loop simulator. Experimental and hardware-in-the-loop simulation results have been compared for the standard FMVSS No. 126 test and the results have been found to be in good agreement with each other. Two electronic stability control (ESC) algorithms, named the Basic ESC and the Integrated ESC, taken from the earlier work of the authors have been tested and evaluated in the hardware-in-the-loop simulator. Different evaluation methods have been formulated and used to compare these ESC algorithms. As a result, the Integrated ESC system has been shown superior performance as compared to the Basic ESC algorithm.

Evaluating Traffic Safety Benefits of Electronic Stability Control System Using a Meta Analysis: Focused on Accident Rates (메타분석을 이용한 차체자세제어장치(ESC)의 교통안전성 효과분석: 사고율 분석을 중심으로)

  • OH, Minsoo;YOUN, Seokmin;JEONG, Eunbi;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.307-320
    • /
    • 2017
  • The objective of this study is to identify the effectiveness of ESC(Electronic Stability Control) based on a meta analysis technique. Accident Rate, Fatal Crash Rate, Loss of Control Crash Rate were set as indexes of traffic safety evaluation. Also, reviews on the effectiveness of ESC were collected using keyword, 'ESC'. As a result, the Effect size of accident rate odd ratio was 0.90. When ESC system was applied on vehicles, accident rate decreased by 10%. Also, the Effect size of fatal crash rate odd ratio was 0.64. When ESC system was applied on vehicles, fatal crash rate decreased by 36%. Lastly, the Effect size of loss of control crash rate odd ratio was 0.73. When ESC system was applied on vehicles, loss of control crash rate decreased by 27%. The outcome of this study would be effectively used for developing polices and regulations for ESC installation obligation of commercial vehicles.

Study on the Characteristics of Control by High Frequency ECU for Braking System (제동 시스템을 위한 고주파수 ECU의 제어 특성 연구)

  • Yeon, Kyu-Bong;Chong, Jong-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2428-2434
    • /
    • 2012
  • This paper describes the control of a solenoid valve of ESC(Electronic Stability Control) with hydraulic modulator in braking system. ESC ECU(Electronic Control Unit) to control the high-frequency control and slope control method was applied, the surge pressure and EMI(electromagnetic interference) reduction characteristics were studied. The stage of ECU output was added the slope shaping function to reduce electromagnetic emission at higher frequencies. Measurements show that this high frequency ECU manages to reduce the surge pressure and electromagnetic emission by the control of solenoid valve. In conclusion, by using the results of this study for the high frequency ECU control, we could expect enhancement of braking system performance.

ECU-In-the-Loop Simulation for ESC Performance Analysis on the Selection of In-vehicle Networks (차량 내 네트워크 선정에 따른 ESC 성능 분석을 위한 ECU-In-the-Loop 시뮬레이션)

  • Yang, Seung-Moon;Kim, Seong-Yeop;Ki, Young-Hun;Ahn, Hyun-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.87-96
    • /
    • 2013
  • This paper shows how the performance of an ESC(Electronic Stability Control) system can be affected by the selection of in-vehicle network protocols such as CAN or FlexRay. The vehicle control performance under ESC operation is analyzed by EILS(ECU-In-the-Loop Simulation). The experimental set-up for the EILS of the ESC system consists of two 32-bit microcontroller boards communicated with CAN or FlexRay protocols. A 7-DOF vehicle model and an ESC algorithm with 2-DOF reference vehicle model are implemented on each microcontroller respectively. It is shown by experimental results that the ESC system using the FlexRay protocol can achieve better performance than that using the CAN protocol for a fast and accurate lane changing.

Unified Chassis Control with ESC and AFS under Lateral Tire Force Constraint on AFS (타이어 횡력 제한 조건 하에서 ESC와 AFS를 이용한 통합 섀시 제어)

  • Yim, Seongjin;Nam, Gi Hong;Lee, Ho Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.595-601
    • /
    • 2015
  • This paper presents an unified chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. When generating the control yaw moment, an optimization problem is formulated in order to determine the tire forces, generated by ESC and AFS. With Karush-Kuhn-Tucker optimality condition, the optimum tire forces can be algebraically calculated. On low friction road, the lateral force in front wheels is easily saturation. When saturated, AFS cannot generate the required control yaw moment. To cope with this problem, new constraint on the lateral tire force is added into the original optimization problem. To check the effectiveness of the propose method, simulation is performed on the vehicle simulation package, CarSim.

Unified Chassis Control for Improvement of Vehicle Lateral Stability (차량 횡방향 안정성 향상을 위한 통합섀시 제어)

  • Cho, Wan-Ki;Yi, Kyoung-Su;Yoon, Jang-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF