• 제목/요약/키워드: ESBL

Search Result 105, Processing Time 0.028 seconds

Molecular detection of blaVIM, blaBIC, blaKPC, and blaSIM genes from isolated bacteria in retail meats (육류용 고기로부터 분자진단을 이용한 항생제내성 유전자 양상)

  • Hwang, You Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.413-419
    • /
    • 2021
  • The purpose of this study was to investigate the ability to treat and prevent infection by multiple Gram-negative bacterial pathogens as a last choice option in the treatment of serious infections in clinical settings. The global spread of extended-spectrum 𝛽-lactamases (ESBLs) and/or carbapenemases in microorganisms are of enormous concern to health services because they are often associated with multi-drug resistance which significantly restricts the antibiotic treatment options. In this study, the antimicrobial resistance profiles of bacteria isolated from South Korean market-derived meat samples were determined by the disc diffusion method. PCR was used to detect the presence of antibiotic resistance genes and ESBL producing genes. In total, we tested 181 isolated colonies from 36 market-derived meat samples. Single PCR and DNA sequencing results revealed that genes blaVIM, blaBIC, blaKPC, and blaSIM were present in the bacteria isolated from retail meat. The bacteria in the meat were separately sequenced and based on alignment, four different bacteria were identified. These findings suggest that bacteria found in retail meats are a reservoir for the spreading of ESBL blaVIM, blaBIC, blaKPC, and blaSIM resistance genes and bacteria strains.

Characterization of Extended Spectrum $\beta$-Lactamase Genotype TEM, SHV, and CTX-M Producing Klebsiella pneumoniae Isolated from Clinical Specimens in Korea

  • Kim Yun-Tae;Kim Tae-Un;Baik Hyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.889-895
    • /
    • 2006
  • To investigate the antibiotic-resistant patterns and the gene types of extended-spectrum $\beta$-lactamase (ESBL)-producing Klebsiella pneumoniae, we collected 226 Klebsiella pneumoniae strains from three general hospitals with more than 500 beds in Busan, Korea from September 2004 to October 2005, The minimum inhibitory concentration (MIC) of antibiotics was measured using the Gram-negative susceptibility (GNS) cards of Vitek (Vitek system, Hazelwood Inc., MO, U.S.A.). Of the 226 K, pneumoniae isolates, 65 ESBL-producing K. pneumoniae strains were detected by the Vitek system and confirmed by the double-disk synergy test. TEM (Temoniera) type, SHV (sulfhydryl variable) type, and CTX-M (cefotaxime) type genes were detected by polymerase chain reaction. All 65 K. pneumoniae strains were resistant to ampicillin, cefazolin, cefepime, ceftriaxone, and aztreonam, and 83.0% of the organisms were resistant to ampicillin/sulbactam, 66.1% to tobramycin, 67.6% to piperacillin/tazobactam, 61.5% to ciprofloxacin, and 47.6% to trimethoprim/sulfamethoxazole, and 43.0% to gentamicin. TEM-type ESBLs (TEM-1 type, -52 type) were found in 64.6% (42 of 65) of the isolates, SHV-type ESBLs (SHV-2a type, -12 type, -28 type) in 70.7% (46 of 65) of isolates, and CTX-M-type ESBLS (CTX-M-15 type) in 45% (29 of 65) of isolates. Of the 65 ESBL-producing K. pneumoniae strains, two strains were found to harbor blaSHV-28, which were detected in Korea for the first time. Therefore, more investigation and research on SHV-28 are needed in order to prevent the ESBL type-producing K. pneumoniae from spreading resistance to oxyimino cephalosporin antibiotics.

Random Amplified Polymorphic DNA (RAPD) Analysis for Extended Spectrum ${\beta}-Lactamase$ Producing Klebsiella pneumonia Isolated from Clinical Specimens in Korea

  • Kim Yun-Tae
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.267-274
    • /
    • 2006
  • Klebsiella pneumoniae is the leading cause of nasocomial infection and the most commonly isolated from clinical specimens. $Extended-spectrum-{\beta}-lactamase$ (ESBL) producing K. pneumoniae infection was associated with a significantly longer duration of hospital stay and greater hospital charges. The purpose of this study is to investigate the antibiotic resistant patterns and the DNA fingerprint types of extended-spectrum ${\beta}-lactamase$ (ESBL) producing K. pneumoniae. 223K. pneumoniae strains were collected from three general hospitals with more than 500 beds in Busan, Korea from September 2004 to October 2005. The minimum inhibitory concentration (MIC) of antibiotics was measured using the Gram negative susceptibility (GNS) cards of VITEK (Vitek system, Hazelwood Inc., MO). Random amplified polymorphic DNA method was used to detect DNA fingerprint of the organisms. Of the 226 K. pneumoniae isolates 65 ESBL-producing K. pneumoniae strains were detected by the Vitek system and confirmed by the double-disk synergy test. All the 65K. pneumoniae strains were resistant cefazolin, cefepime, ceftriaxone and aztreonam, and 83.0% of the organisms were resistant to ampicillin/sulbactam, 66.1% to tobramycin, 67.6% to piperacillin/tazobactam, 61.5% to ciprofloxacin, and 47.6% to trimethoprim/sulfamethoxazole and 43.0% to gentamicin. The RAPD patterns were distincted as 10 types by three random 10-mer primers (208, 272, 277). Among ten type patterns, three types (Ic, IIb, IIIe) were remarkably represented at patient of internal department, nerve surgery department, general surgery department, and neonatal room. These results indicate that RAPD can be useful for DNA of strains typing in the epidemiological investigations. Therefore more investigation are needed in order to prevent the ESBL type-producing K. pneumoniae from spreading resistance to oxyimino cephalosphorin antibiotics.

  • PDF

Detection of CTX-M and TEM type extended-spectrum β-lactamases in Escherichia coli isolated from livestocks in Korea (국내 가축 유래 대장균에서 CTX-M 및 TEM형 extended-spectrum β-lactamases의 검출)

  • Cho, Jae-Keun;Sung, Myung-Suk;Kim, Jin-Hyun;Kim, Ki-Seuk
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • This study was conducted to investigate the prevalence and genotypes of extended-spectrum ${\beta}$-lactamase (ESBL) in 377 Escherichia coli isolated from healthy and sick animals. Two isolates (0.5%), each of which were isolated from diseased swine and chicken, respectively, were confirmed as ESBL producing isolates by double disk synergy test, and showed a multidrug resistant phenotype. Minimum inhibitory concentration of cefotaxime for the two ESBL producing isolates were 3~4 times higher than those of ceftazidime, respectively. By PCR and sequencing, one isolate from swine have both $bla_{CTX-15}$ and $bla_{TEM-1}$, and one isolate from chicken have $bla_{CTX-15}$ and $bla_{TEM-116}$. Also, these genes were transferred to E. coli J53 by conjugation. These two isolates showed unrelated pulsed-field gel electrophoresis. To our knowledge, this is the first time that $bla_{TEM-116}$ gene was identified in E. coli isolated from animals in Korea. These results suggest more prudent use of third- generation cephalosporins, and surveillance and monitoring for ESBL producing E. coli in both animals and their environments should be necessary.

CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases

  • Kim, Jun-Seob;Cho, Da-Hyeong;Park, Myeongseo;Chung, Woo-Jae;Shin, Dongwoo;Ko, Kwan Soo;Kweon, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.394-401
    • /
    • 2016
  • Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

Detection of CTX-M Type ESBL Producing Salmonella in Retail Meat in Korea

  • Kim, Yong Hoon;Joo, In Sun;Kim, Yoon Jeong;Oh, Mi Hyun;Cho, Joon Il;Han, Min Kyong;Kim, Soon Han;Moon, Tae Wha;Park, Kun Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • This study was performed to evaluate antimicrobial resistance of food-borne pathogens isolated from retail meat in Korea. A total of 157 samples of beef, pork, and chicken were collected and analyzed for E. coli, Salmonella, Campylobacter. Resistances to tetracycline were declined in accord with reduced usage of tetracycline in live stock production. E. coli stains from chicken meat had higher multi-drug resistance ratio than strains from other meat. One extended spectrum beta lactamase (ESBL) producing E. coli and two ESBL producing Salmonella were identified in this study. ESBL producing Salmonella strains were confirmed to carry CTX-M-1 type genes.

Febrile urinary tract infection in children: changes in epidemiology, etiology, and antibiotic resistance patterns over a decade

  • Suh, Woosuck;Kim, Bi Na;Kang, Hyun Mi;Yang, Eun Ae;Rhim, Jung-Woo;Lee, Kyung-Yil
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.6
    • /
    • pp.293-300
    • /
    • 2021
  • Background: Understanding the epidemiology and prevalence of febrile urinary tract infection (fUTI) in children is important for risk stratification and selecting appropriate urine sample collection candidates to aid in its diagnosis and treatment. Purpose: This study aimed to analyze the epidemiology, etiology, and changes in antibiotic susceptibility patterns of the first fUTI in children. Methods: This retrospective observational cohort study included children younger than 19 years of age who were diagnosed and treated for their first fUTI in 2006-2016. Electronic medical records were analyzed and radiologic images were evaluated. Results: A total of 359 patients (median age, 5.1 months; interquartile range, 3.0-10.5 months) fit the inclusion criteria; of them, 78.0% (n=280) were younger than 12 months old. The male to female ratio was 5.3:1 for patients aged 0-2 months, 2.1:1 for those 3-5 months, and 1.6:1 for those 6-11 months. Beyond 12 months of age, there was a female predominance. Escherichia coli was the leading cause (83.8%), followed by Enterococcus species (6.7%), and Klebsiella pneumoniae (3.6%). Significant yearly increases in the proportions of multidrug-resistant strains (P<0.001) and extended-spectrum beta-lactamase (ESBL) producers (P<0.001) were observed. In patients with vesicoureteral reflux (VUR), the overall recurrence rate was 53.6% (n=15). A significantly higher recurrence rate was observed when the fUTI was caused by an ESBL versus non-ESBL producer (75.0% vs. 30.0%, P=0.03). Conclusion: fUTI was most prevalent in children younger than 12 months of age and showed a female predominance in patients older than 12 months of age. The proportion of ESBL producers causing fUTI is increasing. Carbapenems, rather than noncarbapenems, should be considered for treating fUTI caused by ESBL-producing enteric gram-negative rods to reduce short-term recurrence rates in children with VUR.

Molecular-epidemiologic study on outbreak of colonization by extended spectrum β-lactamase producing Klebsiella pneumoniae in neonatal intensive care unit (신생아 중환자실에서 extended spectrum β-lactamase를 생성하는 Klebsiella pneumoniae 집단 보균 발생의 분자 역학적 조사 및 추적관찰)

  • Jun, Nu-Lee;Kim, Mi-Na;Jeong, Jae-Sim;Kim, Yang-Soo;Kim, Ellen Ai-Rhan;Kim, Ki-Soo;Pi, Soo-Young
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.2
    • /
    • pp.150-156
    • /
    • 2006
  • Purpose : The aims of this study included assessment of molecular-epidemiologic features during an outbreak of colonization of extended spectrum ${\beta}$-lactamase producing Klebsiella pneumoniae(ESBL-KPN) and re-evaluation of their colonized status one year later. Methods : Rectal swab cultures for ESBL-KPN from all hospitalized infants and newly admitted infants were obtained during the outbreak of colonization from July to December, 2000. The pattern of XbaI-digested chromosomal DNA of isolates were analyzed by pulsed-field gel electrophoresis. Weekly rectal swab cultures were obtained during the outbreak until patients were either discharged or decolonized. Patients discharged after being colonized had follow up stool cultures a year later. Results : A total of 80 patients(28.5 percent) were colonized. Of those, 53 whose pulsed-field gel electrophoresis(PFGE) was possible only once, were ESBL-KPN grouped into six cluster clones and 10 single clones : 28 patients(52.8 percent) were colonized with type A, the most common clone, followed by type B in 11 patients(20.8 percent). Of those 12 patients in whom serial PFGE was done more than twice, type A was predominant. Narrowed-down in strains occurred from types A, B, C, D and three single clones at initiation of the study into types A and type B after three months of strict infection control. Among 75 patients(93.7 percent) who were sent home after being colonized, 30 patients were re-called for stool cultures a year later : All of them were decolonized. Conclusion : This study demonstrates the importance of infection control as the diversity of ESBL-KPN strains could be narrowed into fewer strains. Colonization of ESBL-KPN could be reversed upon return to the community.

Antibiotic Sensitivity Pattern of Pathogens from Children with UTI (소아 요로 감염 원인균의 항생제 감수성 고찰(2003-2005))

  • Kwon, Young-Dae;Kim, Myung-Jin;Kim, Hee-Un;Song, Jin-Young;Ko, Joon-Tae;Kang, Ho-Seok;Oh, Sei-Ho
    • Childhood Kidney Diseases
    • /
    • v.10 no.2
    • /
    • pp.182-191
    • /
    • 2006
  • Purpose : We studied the degree of changes in antibiotic sensitivity toward causative organisms, prevalence and clinical manifestations of extended-spectrum $\beta$-lactamase(ESBL)-producers of urinary tract infection(UTI) for a period of three years. This serves to provide useful information in selecting adequate drugs for the treatment of UTI. Methods : We recruited 137 patients who grew more than $10^5$ CFU/mL in their urine culture among 250 patients who visited and were admitted to Handong University's Sunlin Hospital for UTI treatment from January 2003 to December 2005. We retrospectively analyzed the data from the medical records. Results : The common pathogenic organisms were Escherichia coli(65.0%), Klepsiella pneumoniae(14.0%), Enterococcus faecalis(5.8%) and Proteus vulgaris(2.9%) in consecutive order. The prevalence of ESBL-producers among isolated E. coli and K. pneumoniae was 4.5%(4 cases) and 14.3%(2 cases), respectively. The antibiotic sensitivity rates of E. coli were relatively high to amikacin(100%), imipenem(100%), ceftriaxone(95.5%) and tobramycin(91.4%) while relatively low to TMP/SMZ(55.4%), ampicillin/sulbactam(29.4%) and ampicillin(24.2%). Conclusion : The use of ampicillin, ampicillin/sulbactam and TMP/SMZ, which have been the first choices in the treatment of UTI, should be reconsidered due to the low sensitivity rates towards these antibiotics. Due to the high incidence and antibiotic tolerance of ESBL that might have risen from the development of new antibiotics and increased antibiotic use, it is necessary to consider changing the standard antibiotics that have been used in the treatment of UTI.

  • PDF

Formulation of Ceftriaxone Conjugated Gold Nanoparticles and Their Medical Applications against Extended-Spectrum β-Lactamase Producing Bacteria and Breast Cancer

  • El-Rab, Sanaa M.F. Gad;Halawani, Eman M.;Hassan, Aziza M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1563-1572
    • /
    • 2018
  • Gold nanoparticles (AuNP) and their conjugates have been gaining a great deal of recognition in the medical field. Meanwhile, extended-spectrum ${\beta}$-lactamases (ESBL)-producing bacteria are also demonstrating a challenging problem for health care. The aim of this study was the biosynthesis of AuNP using Rosa damascenes petal extract and conjugation of ceftriaxone antibiotic (Cef-AuNP) in inhibiting ESBL-producing bacteria and study of in vitro anticancer activity. Characterization of the synthesized AuNP and Cef-AuNP was studied. ESBL-producing strains, Acinetobacter baumannii ACI1 and Pseudomonas aeruginosa PSE4 were used for testing the efficacy of Cef-AuNP. The cells of MCF-7 breast cancer were treated with previous AuNP and Cef-AuNP at different time intervals. Cytotoxicity effects of apoptosis and its molecular mechanism were evaluated. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy established the formation of AuNP and Cef-AuNP. Transmission electron microscope demonstrated that the formed nanoparticles were of different shapes with sizes of 15~35 nm and conjugation was established by a slight increase in size. Minimum inhibitory concentration (MIC) values of Cef-AuNP against tested strains were obtained as 3.6 and $4{\mu}g/ml$, respectively. Cef-AuNP demonstrated a decrease in the MIC of ceftriaxone down to more than 27 folds on the studied strains. The biosynthesized AuNP displayed apoptotic and time-dependent cytotoxic effects in the cells of MCF-7 at a concentration of $0.1{\mu}g/ml$ medium. The Cef-AuNP have low significant effects on MCF-7 cells. These results enhance the conjugating utility in old unresponsive ceftriaxone with AuNP to restore its efficiency against otherwise resistant bacterial pathogens. Additionally, AuNP may be used as an alternative chemotherapeutic treatment of MCF-7 cancer cells.