• Title/Summary/Keyword: ES cells

Search Result 221, Processing Time 0.029 seconds

Differentiative potential of embryonic stem (ES) cells in vitro; formation of embryoid body and its practical application (배아기간세포 (ES cell)의 체외에서의 분화능;embryoid body형성과 실제 적용)

  • 박종임
    • Journal of Embryo Transfer
    • /
    • v.14 no.1
    • /
    • pp.6-15
    • /
    • 1999
  • ES cell의 수립으로 특히 mouse를 중심으로 한 발생학, 유전학 연구의 획기적 발전과 형질변환 동물의 생산 및 동물 체내에서 유전자 기능의 탐구에 매우 큰 변혁을 가져오게 되었다. 또한 ES cell과 embryoid body는 체외 분화능의 연구에 있어 새로운 cytokine의 발견 및 세포 수준에서의 유전자 기능 해석의 강력한 연구수단으로서 폭 넓게 이용되어 질 수 있는 가능성을 시사하고 있다. 이는 ES cell line이 지닌 두 가지 장점, 즉, 유전자 조작의 용이함과, 거의 모든 종류의 성체 구성세포로 분화할 수 있는 성질 때문이다. 이러한 ES cell technology를 실제로 제반 학문과 특히, 인간에게 적용하기 위해서는 반드시 해결해야 할 중요한 문제점이 있다. 첫째로, ES cell을 대상으로 하는 형질변환 방법의 편의성 및 효율개선이 이루어 wu야 하며, 두 번째로 인간의 유전자 및 세포 이식 치료 등을 비롯한 제반 연구에 직접 적용 가능한 ES cell line의 수립과 체외에서 목적으로 하는 분화 세포를 얻기 위한 배양조건이 확립되어져야 한다. 이러한 목표를 달성하기 위해 ES cell의 발생, 분화과정에 있어서의 분자조절기구, 세포 특이적 promotor, 유도 signal등에 대한 연구가 활발히 진행되어져야 할 것이다.

  • PDF

Anti-cancer effect of Eriocaulon sieboldianum through the activation of caspase-3 in human leukemia cell line, HL-60 cells

  • Kim, Su-Jin;Lee, Gi-Tak;Lee, Bo-Ra;Jeon, Kwon-Su;Rim, Hong-Kun;Bang, Jun-Ho;Kim, Yang-Gwi;Myung, No-Yil;Moon, Phil-Dong;Kim, Na-Hyung;Choi, In-Young;Choi, Young-Jin;Kang, In-Cheol;Um, Jae-Young;Hong, Seung-Heon;Kim, Hyung-Min;Jeong, Hyun-Ja
    • Advances in Traditional Medicine
    • /
    • v.9 no.2
    • /
    • pp.186-191
    • /
    • 2009
  • Eriocaulon sieboldianum (ES) is used in traditional oriental medicine for various medicinal purposes including headache, toothache, and inflammation. However, the anti-cancer effect of the ES is still not fully understood. In the present study, the human leukemia cell line HL-60 was used to characterize the apoptotic effects of ES. ES induced cytotoxicity of HL-60 cells in a dose- and time-dependent manner. ES induced the generation of reactive oxygen species, and the release of cytochrome c in a dose-dependent manner. In addition, we showed that ES-induced apoptosis was accompanied by activation of caspase-3. Taken together, our results demonstrate that ES possesses anti-cancer activity in HL-60 cells.

Epigenetic Regulation by Modification of Histone Methylation in Embryonic Stem Cells (히스톤 메틸화 변형을 통한 배아줄기세포의 후성 유전학적 조절)

  • Ha, Yang-Hwa;Kim, Young-Eun;Park, Jeong-A;Park, Sang-Kyu;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Epigenetic regulation is a phenomenon that changes the gene function without changing the underlying DNA sequences. Epigenetic status of chromosome is regulated by mechanisms such as histone modification, DNA modification, and RNAi silencing. In this review, we focused on histone methylation for epigenetic regulation in ES cells. Two antagonizing multiprotein complexes regulate methylation of histones to guide expression of genes in ES cells. The Polycomb repressive complex 2 (PRC2), including EED, EZH2, and SUZ12 as core factors, contributes to gene repression by increasing trimethylation of H3K27 (H3K27me3). In contrast, the Trithorax group (TrxG) complex including MLL is related to gene activation by making H3K4me3. PRC2 and TrxG accompany a variety of accessory proteins. Most prominent feature of epigenetic regulation in ES cells is a bivalent state in which H3K27me3 and H3K4me3 appear simultaneously. Concerted regulation of PRC2, TrxG complex, and H3K4- or H3K27-specific demethylases activate expression of pluripotency-related genes and suppress development-related genes in ES cells. Modified balance of the regulators also enables ES cells to efficiently differentiate to a variety of cells upon differentiating signals. More detailed insights on the epigenetic regulators and their action will lead us to better understanding and use of ES cells for future application.

Human Embryonic Stem Cells Co-Transfected with Tyrosine Hydroxylase and GTP Cyclohydrolase I Relieve Symptomatic Motor Behavior in a Rat Model of Parkinson′s Disease

  • Kil, Kwang-Soo;Lee, Chang-Hyun;Shin, Hyun-Ah;Cho, Hwang-Yoon;Yoon, Ji-Yeon;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, Se-Pill
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.101-101
    • /
    • 2003
  • Main strategy for a treatment of Parkinson's disease (PD), due to a progressive degeneration of dopaminergic neurons, is a pharmaceutical supplement of dopamine derivatives or ceil replacement therapy. Both of these protocols have pros and cons; former exhibiting a dramatic relief but causing a severe side effects on long-term prescription and latter also having a proven effectiveness but having availability and ethical problems Embryonic stem (ES) cells have several characteristics suitable for this purpose. To investigate a possibility of using ES cells as a carrier of therapeutic gene(s), human ES (hES, MB03) cells were transfected with cDNAs coding for tyrosine hydroxylase (TH) in pcDNA3.1 (+) and the transfectants were selected using neomycin (250 $\mu /ml$). Expression of TH being confirmed, two of the positive clone (MBTH2 & 8) were second transfected with GTP cyclohydrolase 1 (GTPCH 1) in pcDNA3.1 (+)-hyg followed by selection with hygromycin-B (150 $\mu /ml$) and RT-PCR confirmation. By immune-cytochemistry, these genetically modified but undifferentiated dual drug-resistant cells were found to express few of the neuronal markers, such as NF200, $\beta$-tubulin, and MAP2 as well as astroglial marker GFAP. This results suggest that over-production of BH4 by ectopically expressed GTPCH I may be involved in the induction of those markers. Transplantation of the cells into striatum of 6-OHDA- denervated PD animal model relieved symptomatic rotational behaviors of the animals. Immunohistochemical analyses showed the presence of human cells within the striatum of the recipients. These results suggest a possibility of using hES cells as a carrier of therapeutic gene(s).

  • PDF

Simple Methods for Production of Chimeric Mouse by Coculture with TT2 Embryonic Stem Cells (TT2 Embryonic Stem Cell 을 이용한 Chimeric Mouse 생산에 있어서 간단한 공배양방법)

  • Cho, Y.Y.;Moon, S.J.;Kang, M.J.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.451-455
    • /
    • 2000
  • Gene targeting are very useful tools for the research on the gene function in vivo, mass production of foreign materials and biomedical approach of therapeutic process. But this process is very complicated and necessary highly skilled technique, because it is very different from ES cell origin, genetic background of embryo, and experimental conditions. We investigated the productivity ability of chimeric mouse after aggregation with TT2 ES cells. Increse of ES cell density caused gradual decrease in embryo development in vitro and in th $\varepsilon$ production of chimeric mice in vivo. One million ES cell density for the aggregation was very efficient to produce high percentage chimeric mice in their coat color. These results suggested that appropriate cell density plays a key role in the development and production of chimeric mice by a 8-cell aggregation method.

  • PDF

Characterization of MACS Isolated Cells from Differentiated Human ES Cells (인간 배아줄기세포로부터 분화된 세포에서 MACS 방법을 이용하여 분리한 세포의 특성에 대한 연구)

  • Cho, Jae Won;Lim, Chun Kyu;Shin, Mi Ra;Bang, Kyoung Hee;Koong, Mi Kyoung;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2006
  • Objective: Human embryonic stem (ES) cells have a great potential in regenerative medicine and tissue engineering. The human ES cells could be differentiated into specific cell types by treatments of growth factors and alterations of gene expressions. However, the efficacy of guided differentiation and isolation of specific cells are still low. In this study, we characterized isolated cells from differentiated human ES cells by magnetic activated cell sorting (MACS) system using specific antibodies to cell surface markers. Methods: The undifferentiated hES cells (Miz-hESC4) were sub-cultured by mechanical isolation of colonies and embryoid bodies were spontaneously differentiated with DMEM containing 10% FBS for 2 weeks. The differentiated cells were isolated to positive and negative cells with MACS system using CD34, human epithelial antigen (HEA) and human fibroblast (HFB) antibodies, respectively. Observation of morphological changes and analysis of marker genes expression were performed during further culture of MACS isolated cells for 4 weeks. Results: Morphology of the CD34 positive cells was firstly round, and then it was changed to small polygonal shape after further culture. The HEA positive cells showed large polygonal, and the HFB positive spindle shape. In RT-PCR analysis of marker genes, the CD34 and HFB positive cells expressed endodermal and mesodermal genes, and HEA positive cells expressed ectodermal genes such as NESTIN and NF68KD. The marker genes expression pattern of CD34 positive cells changed during the extension of culture time. Conclusion: Our results showed the possibility of successful isolation of specific cells by MACS system from undirected differentiated human ES cells. Thus, MACS system and marker antibodies for specific cell types might be useful for guided differentiation and isolation of specific cells from human ES cells.

Cloning and Functional Studies of Pro-Apoptotic MCL-1ES BH3M (세포사멸을 유도하는 새로운 단백질인 MCL-1ES BH3M의 클로닝 및 기능연구)

  • Kim, Jae-Hong;Park, Mira;Ha, Hye-Jeong;Lee, Kangseok;Bae, Jeehyeon
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.297-303
    • /
    • 2008
  • BCL-2 family members are essential protein for the regulation of cell death and survival consisting both antiapoptotic and pro-apoptotic proteins. In the present study, we designed and cloned a new apoptotic molecule MCL-1ES BH3M coding a modified protein of MCL-1L. Compared to MCL-1L protein, MCL-1ES BH3M lacks the PEST motifs known to be involved in MCL-1L protein degradation and has seven mutated residues in BH3 domain critical for dimerization with BCL-2 family members. Overexpression of MCL-1ES BH3M induced death of different cells, and its cell killing effect was not blocked by forced expression of the pro-survival protein MCL-1L. Expression of MCL-1ES BH3M protein led to the activation of caspase 9 and caspase 3, suggesting apoptotic cell death, and confocal fluorescent microscopic analyses showed that MCL-1ES BH3M was partially localized in mitochondria. In conclusion, we reported a new apoptotic molecule and determined its cell death activity in cells.

  • PDF

Functional Cardiomyocytes Formation Derived from Mouse Embryonic Stem Cells

  • Shin, Hyun-Ah;Lee, Keum-Sil;Cho, Hwang-Yoon;Park, Sae-Young;Kim, Eun-Young;Lee, Young-Jae;Park, Se-Pill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.100-100
    • /
    • 2003
  • Pluripotent embryonic stem (ES) cells differentiate spontaneously into beating cardiomyocytes via embryo-like aggregates. We describe the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. To induce cardiomyocytic differentiation, mES03 cells were dissociated and allowed to aggregate (EB formation) at the presence of 0 75% dimethyl sulfoxide (DMSO) for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EBs were plated onto gelatin-coated dish for differentiation. Spontaneously contracting colonies which appeared in approximately 4-5 days upon differentiation. Expression of cardiac-specific genes were determined by RT-PCR. Rebust expression of myosin light chain (MLC-2V), cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta(\beta$-MHC), cardiac transcription factor GATA4 and skeletal muscle-specific ${\alpha}_1$-subunit of the L-type calcium channel (${\alpha}_1 CaCh_{sm}$) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel (${\alpha}_1$CaCh) were revealed at a low level. Strikingly, the expression of atrial natriuretic factor (ANF) was not detected. When spontaneous contracting cell masses were examined their electrophysiological features by patch-clamp technique, it showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes displayed biochemical and electrophysiological properties of cardiomyocytes and DMSO enhanced development of cardiomyocytes in 4+/4- method.

  • PDF

Study of frontal and ethmoid sinus of sinonasal complex along with olfactory fossa: anatomical considerations for endoscopic sinus surgery

  • Kusum R Gandhi;Sumit Tulshidas Patil;Brijesh Kumar;Manmohan Patel;Prashant Chaware
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.179-184
    • /
    • 2023
  • The Functional endoscopic sinus surgery through transnasal approach is a common modality of treatment for disorders of the nasal cavity, paranasal air sinuses as well as cranial cavity. The olfactory fossa (OF) is located along the superior aspect of cribriform plate which varies in shape and depth. This variable measurement of the depth of OF is mostly responsible for greater risk of intracranial infiltration during endoscopic procedures in and around the nasal cavity. The morphology of frontal and ethmoid sinus (ES) vary from simple to complex. This cadaveric study is planned to improve the ability of the otolaryngologist, radiologist to understand the possible morphological variations and plan steps of less invasive "precision surgery" to have a safe and complication free procedures. A total of 37 human head regions were included in the study. For classification of OF, Modified Kero's classification was used. The size, shape and cells of frontal and ES were noted. We found, type II (60.8%) OF was more common followed by type I (29.7%) than type III (9.5%). The shape of frontal sinus was comma shaped (55.4%) followed by oval (18.9%) than irregular (16.2%). Most common two cells type of ES was seen in 50.0% of both anterior and posterior ES. Out of 74 ES, 8.1% of Onodi cells and 14.9% of agger nasi cells were seen.