• Title/Summary/Keyword: ERK activation

Search Result 682, Processing Time 0.054 seconds

Curcumin Attenuates Chronic Constriction Nerve Injury-Induced Neuropathic Pain in Rats (Curcumin의 신경병증성 통증 억제효과)

  • Kim, Chae-Eun;Park, Eun-Sung;Jeon, Young-Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • Nerve injury can lead to neuropathic pain, which is often resistant to current analgesics and interventional therapeutic methods. Extracellular signal-regulated kinase (ERK) plays important role in the induction of neuropathic pain. We explored the antinociceptive effect of curcumin and its effect on ERK in the spinal cord in the neuropathic pain model of rats induced by chronic constriction injury (CCI) of the sciatic nerve. In injured rats, mechanical allodynia, which is one of characteristics of neuropathic pain developed and the activation of ERK in spinal cord significantly increased compared with control group. However, administration of curcumin (50 mg/kg/day p.o) for 7 days started from one day before the injury prevented the development of mechanical allodynia and increase of ERK phosphorylation. These results indicate that curcumin can be a new therapeutic agent in the treatment of neuropathic pain.

Extracellular Signal-Regulated Kinase (ERK1/2) Regulate Glucose Deprivation-Induced Cell Death in Immunostimulated Astrocytes

  • Yoo, Byoung-Kwon;Park, Ji-Woong;Yoon, Seo-Young;Jeon, Mi-Jin;Park, Gyu-Hwan;Chun, Hyun-Joo;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.83-83
    • /
    • 2003
  • In our previous study, glucose deprivation was reported to induce the potentiated death and ATP loss in immunostimulated astroglia. And this vulnerability to glucose deprivation was due to overproduction of nitric oxide (NO) and hydrogen peroxide (H$_2$O$_2$). In the present study, the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in the glucose deprivation-induced death of immunostimulated astroglia was examined. We showed that immunostimulation with LPS+IFN-ν activated the ERKl/2 signal pathway and produced a large amount of NO and H$_2$O$_2$. Generation of NO and H$_2$O$_2$ in immunostimulated astroglia was mediated via ERK1/2 signal pathways, since addition of the ERK kinase (MEKl) inhibitor PD98059 reduced NO and H$_2$O$_2$production. ERK1/2 activation-mediated NO and H$_2$O$_2$ production is due to an activation of iNOS and NADPH oxidase, respectively. Finally, we found that glucose deprivation caused ATP depletion and the augmented death in immunostimulated astroglia, which was also prevented by PD98059 treatment. These results demonstrate that the ERK1/2 signal pathways play an important role in glucose deprivation induced the death in immunostimulated astroglia by regulating the generation of NO and H$_2$O$_2$.

  • PDF

Cl--Channel Is Essential for LDL-induced Cell Proliferation via the Activation of Erk1/2 and PI3K/Akt and the Upregulation of Egr-1 in Human Aortic Smooth Muscle Cells

  • Heo, Kyung-Sun;Ryoo, Sung-Woo;Kim, Lila;Nam, Miyoung;Baek, Seung-Tae;Lee, Hyemi;Lee, Ah-Reum;Park, Song-Kyu;Park, Youngwoo;Myung, Chang-Seon;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.468-473
    • /
    • 2008
  • Low-density lipoprotein (LDL) induces cell proliferation in human aortic smooth muscle cells (hAoSMCs), which may be involved in atherogenesis and intimal hyperplasia. Recent studies have demonstrated that $Cl^-$ channels are related to vessel cell proliferation induced by a variety of stimuli. In this study, we investigated a potential role of $Cl^-$ channels in the signaling pathway of LDL effects on hAoSMC proliferation with a focus on the activation of Erk1/2-PI3K/Akt and the subsequent upregulation of Egr-1. $Cl^-$ channel blockers, DIDS, but neither NPPB nor Furosemide, completely abolished the LDL-induced DNA synthesis and cell proliferation. Moreover, DIDS, but not NPPB, significantly decreased LDL-stimulated $Cl^-$ concentration, as judged by flow cytometry analysis using MQAE as a $Cl^-$-detection dye. DIDS pretreatment completely abolished the activation of Erk1/2 and PI3K/Akt in a dose-dependent manner that is the hallmark of LDL activation, as judged by Western blot and proliferation assays. Moreover, pretreatment with DIDS ($Cl^-$ channel blockers) but not LY294002 (PI3K inhibitors) completely abolished the LDL-induced upregulation of Egr-1 to the same extent as PD98059 (MEK inhibitors to inhibit Erk), as judged by Western blot and luciferase reporter assays. This is the first report, to our knowledge, that DIDS-sensitive $Cl^-$-channels play a key role in the LDL-induced cell proliferation of hAoSMCs via the activation of Erk1/2 and PI3K/Akt and the upregulation of Egr-1.

Role of ERK (Extracellular Signal Regulated Kinas) and PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) on TGF-β1 Induced Human Endometrial Stromal Cell Decidualization (TGF-β1에 의하여 유도된 인간자궁내막의 탈락막화(Decidualization)에 있어서 ERK (Extracellular Signal Regulated Kinas)와 PPARγ (Peroxisome Proliferator-Activated Receptor Gamma)의 역할)

  • Chang, Hye Jin;Lee, Jae Hoon;Kim, Mi Ran;Hwang, Kyung Joo;Park, Dong Wook;Min, Churl K.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Objective: To investigate the role of ERK and $PPAR{\gamma}$ on the $TGF-{\beta}1$ induced human endometrial stromal cell decidualization in vitro. Method: Endometrial stromal cells are cultured under the following condition: DMEM/F12 (10% FBS, 1 nM E2 and 100 nM P4). $TGF-{\beta}1$ (5 ng/ml), Rosiglitazone (50 nM), and PD98059 ($20{\mu}M$) were added according to experimental purposes. Trypan-Blue and hematocytometer were utilized to count cell number. Enzyme-linked immunosorbent assay (ELISA) and western blotting were utilized to detect proteins. Result: $TGF-{\beta}1$ inhibited proliferation of cultured human endometrial stromal cells and induced expression of PGE2 and prolactin. This effect was mediated by Smad and ERK activation. Administration of rosiglitazone, $PPAR{\gamma}$ agonist, prevented $TGF-{\beta}1$ effect on cell proliferation. Furthermore, Rosiglitazone inhibited $TGF-{\beta}1$ induced activation of ERK, consequently reduced PGE2 and prolactin production. Conclusion: $TGF-{\beta}1$ induced decidualization of endometrial stromal cell through Smad and ERK phosphorylation. $PPAR{\gamma}$ acts as a negative regulator of human ndometrial cell decidualization in vitro.

Anti-apoptotic Effect of Bojungbangam-tang Ethanol Extract on Cisplatin-Induced Apoptosis in Rat Mesangial Cells

  • Kim, Nam-Su;Ju, Sung-Min;Kwon, Young-Dal;Shin, Byung-Cheul;Ahn, Kyoo-Seok;Kim, Sung-Hoon;Song, Yung-Sun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1664-1671
    • /
    • 2006
  • Cisplatin is a anti-neoplastic agent which is commonly used for the treatment of solid tumor. Cisplatin activates multiple signal transduction pathways involved in the stress-induced apoptosis in a variety of cell types. Cytotoxicity of cisplatin was detected in rat mesangial cells and the value of $IC_{50}$ is about 20 ${\mu}M$. The treatment of cisplatin to rat mesangial cells showed the apoptotic bodies and DNA fragmentation. The activation of caspase-3, -8, and -9 and proteolytic cleavage of PARP were observed in the rat mesangial cells treated time-dependently with cisplatin. The activation of ERK, p38 and JNK was also observed in the apoptosis induced by cisplatin in rat mesangial cells. The ethanol extract of Bojungbangam-tang (EBJT), a new hergal prescription composed of nine crude drugs, inhibited cisplatin-induced apoptosis in rat mesangial cells. EBJT reduced sub-G1 peak (apoptotic peak) in cisplatin-treated rat mesangial cells. The cisplatin-induced ERK and JNK activation in rat mesangial cells were blocked by EBJT, but EBJT had no effect on p38 activation. Taken together, these results con suggest that EBJT prevents cisplatin-induced apoptotic cell death in rat mesangial cells through inhibition of ERK and JNK activation.

Dynamical Analysis of Cellular Signal Transduction Pathways with Nonlinear Systems Perspectives (비선형시스템 관점으로부터 세포 신호전달경로의 동역학 분석)

  • Kim Hyun-Woo;Cho Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1155-1163
    • /
    • 2004
  • Extracellular signal-regulated kinase (ERK) signaling pathway is one of the mitogen-activated protein kinase (MAPK) signal transduction pathways. This pathway is known as pivotal in many signaling networks that govern proliferation, differentiation and cell survival. The ERK signaling pathway comprises positive and negative feedback loops, depending on whether the terminal kinase stimulates or inhibits the activation of the initial level. In this paper, we attempt to model the ERK pathway by considering both of the positive and negative feedback mechanisms based on Michaelis-Menten kinetics. In addition, we propose a fraction ratio model based on the mass action law. We first develop a mathematical model of the ERK pathway with fraction ratios. Secondly, we analyze the dynamical properties of the fraction ratio model based on simulation studies. Furthermore, we propose a concept of an inhibitor, catalyst, and substrate (ICS) controller which regulates the inhibitor, catalyst, and substrate concentrations of the ERK signal transduction pathway. The ICS controller can be designed through dynamical analysis of the ERK signaling transduction pathway within limited concentration ranges.

Memory-improving effect of formulation-MSS by activation of hippocampal MAPK/ERK signaling pathway in rats

  • Kim, Sang-Won;Ha, Na-Young;Kim, Kyung-In;Park, Jin-Kyu;Lee, Yong-Heun
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.242-247
    • /
    • 2008
  • MSS, a comprising mixture of maesil (Prunus mume Sieb. et Zucc) concentrate, disodium succinate and Span80 (3.6 : 4.6 : 1 ratio) showed a significant improvement of memory when daily administered (460 mg/kg day, p.o.) into the normal rats for 3 weeks. During the spatial learning of 4 days in Morris water maze test, both working memory and short-term working memory index were significantly increased when compared to untreated controls. We investigated a molecular signal transduction mechanism of MSS on the behaviors of spatial learning and memory. MSS treatment increased hippocampal mRNA levels of NR2B and TrkB without changes of NR1, NR2A, ERK1, ERK2 and CREB. However, the protein levels of pERK/ERK and pCREB/CREB were all significantly increased to $1.5{\pm}0.17$ times. These results suggest that the improving effect of spatial memory for MSS is linked to MAPK/ERK signaling pathway that ends up in the phosphorylation of CREB through TrkB and/or NR2B of NMDA receptor.

Quinic Acid Alleviates Behavior Impairment by Reducing Neuroinflammation and MAPK Activation in LPS-Treated Mice

  • Yongun Park;Yunn Me Me Paing;Namki Cho;Changyoun Kim;Jiho Yoo;Ji Woong Choi;Sung Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.309-318
    • /
    • 2024
  • Compared to other organs, the brain has limited antioxidant defenses. In particular, the hippocampus is the central region for learning and memory and is highly susceptible to oxidative stress. Glial cells are the most abundant cells in the brain, and sustained glial cell activation is critical to the neuroinflammation that aggravates neuropathology and neurotoxicity. Therefore, regulating glial cell activation is a promising neurotherapeutic treatment. Quinic acid (QA) and its derivatives possess anti-oxidant and anti-inflammatory properties. Although previous studies have evidenced QA's benefit on the brain, in vivo and in vitro analyses of its anti-oxidant and anti-inflammatory properties in glial cells have yet to be established. This study investigated QA's rescue effect in lipopolysaccharide (LPS)-induced behavior impairment. Orally administering QA restored social impairment and LPS-induced spatial and fear memory. In addition, QA inhibited proinflammatory mediator, oxidative stress marker, and mitogen-activated protein kinase (MAPK) activation in the LPS-injected hippocampus. QA inhibited nitrite release and extracellular signal-regulated kinase (ERK) phosphorylation in LPS-stimulated astrocytes. Collectively, QA restored impaired neuroinflammation-induced behavior by regulating proinflammatory mediator and ERK activation in astrocytes, demonstrating its potential as a therapeutic agent for neuroinflammation-induced brain disease treatments.

Berberine Chloride Inhibits Receptor Activator of $NF-{\kappa}B$ Ligand-induced Osteoclastogenesis via Preventing ERK Activation

  • Cheon, Myeong-Sook;Kim, Myung-Hee;Lee, Su-Ui;Ryu, Shi-Yong;Kim, Ho-Kyoung;Min, Yong-Ki;Kim, Seong-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.2 s.20
    • /
    • pp.157-164
    • /
    • 2007
  • An imbalance in bone remodeling that is caused by increased bone resorption over bone formation leads to most adult skeletal diseases including osteoporosis. Since the development of anti-resorptive agents from natural substances has recently gained more interest in the treatment of osteoporosis, we evaluated the effects of 222 natural compounds on receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced of tartrate-resistance acid phosphatase (TRAP) activity in RAW264.7 murine macrophage cell, and found that berberine chloride is one of compounds inhibiting RANKL-induced TRAP activity. Berberine chloride significantly inhibited the RANKL-induced TRAP activity and the formation of multinucleated osteoclasts in a dose-dependent manner. In addition, berberine chloride prevented the RANKL-induced mRNA expression of TRAP, matrix metalloproteinase 9 and c-Src, which have been known to be highly expressed in the process of osteoclastogenesis. Interestingly, berberine chloride prevented the RANKL-induced activation of extracellular signal-regulated kinase (ERK) which is one of mitogen-activated protein (MAP) kinases. In conclusion, berberine chloride could inhibit the osteoclastogenesis via preventing the activation of ERK/MAP kinase signaling pathway.

  • PDF

Inhibition of Trypsin-Induced Mast Cell Activation by Water Fraction of Lonicera japonica

  • Kang, Ok-Hwa;Choi, Yeon-A;Park, Hye-Jung;Lee, Joo-Young;Kim, Dae-Ki;Choi, Suck-Chei;Kim, Tae-Hyun;Nah, Yong-Ho;Yun, Ki-Jung;Choi, Suck-Jun;Kim, Young-Ho;Bae, Ki-Hwan;Lee, Young-Ml
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1141-1146
    • /
    • 2004
  • Lonicera japonica Thunb.(Caprifoliaceae) has long been known as an anti-inflammatory. In the present study, the effect of water fraction of Lonicera japonica (LJ) on trypsin-induced mast cell activation was examined. HMC-1 cells were stimulated with trypsin (100 nM) in the presence or absence of LJ (10, 100, and 1000 $\mu$ g/mL). TNF-$\alpha$ and tryptase production were measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-PCR. Extracellular signal-regulated kinase (ERK) phosphorylation was assessed by Western blot. Trypsin activity was measured by using Bz-DL-Arg-p-nitroanilide (BAPNA) as substrate. LJ (10, 100, and 1000 $\mu$g/mL) inhibited TNF-$\alpha$ secretion in a dose-dependent manner. LJ (10, 100, and 1000 $\mu$g/mL) also inhibited TNF-$\alpha$ and tryptase mRNA expression in trypsin-stimulated HMC-1. Furthermore, LJ inhibited trypsin-induced ERK phosphorylation. However, LJ did not affect the trypsin activity even 1000 $\mu$g/mL. These results indicate that LJ may inhibit trypsin-induced mast cell activation through the inhibition of ERK phosphorylation than the inhibition of trypsin activity.