• Title/Summary/Keyword: EPS construction method

Search Result 37, Processing Time 0.02 seconds

3D Cutting Machine of EPS Foam for Manufacturing Free-Formed Concrete Mold (비정형 콘크리트 거푸집 제작을 위한 EPS Foam의 3D 가공기계)

  • Seo, Junghwan;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • We used a construction method using a CNC milling machine, where free-formed molds were made by cutting EPS (Expanded PolyStyrene) foam with the CNC machine, to build free-formed buildings. CNC milling is off-the-shelf technology that can easily cut EPS foam; however its production cost is too high and the time to manufacture an EPS mold is too long. This paper proposes a novel cutting machine with a fast and cost effective mechanism to manufacture EPS concrete molds. Our machine comprises a cutter and Cartesian coordinate type moving mechanism, where the cutter cuts EPS foam using a hotwire in the shape of '$\sqcap$' and is capable of adjusting its cutting angle in real-time while keeping its cutting width. We proved through cutting experiments on the CNC machine that cutting time was greatly shortened compared to the conventional method and that the resulting concrete mold satisfied manufacturing precision.

Load Reduction on Buried Pipes and Culverts using Geosynthetics (토목섬유를 이용한 매설암거의 토압저감효과 연구)

  • 김진만;조삼덕;최봉혁;오세용;안주환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.21-31
    • /
    • 2001
  • The last 30 years have been significant worldwide growth in the use of EPS as a lightweight fill material. A new construction method was introduced, which reduces earth pressure acting on culvert and conduit by placing a thin layer of EPS. This paper analyzes the compressible inclusion function of EPS and geogrid which can results in reduction of earth pressure by arching that is the behaviour of soil-structure system involving redistribution of soil stress around the structure. Field test was conducted to evaluate the reduction of vertical earth pressure using EPS and geogrid inclusion. Based on field test it is found that the magnitude of reduced vertical earth pressure was about 24~50% compared to conventional method.

  • PDF

Method of Reducing Lateral Displacement of Abutment Constructed on Marine Clay Deposits (해안 연약지반상의 교량 구조물 변위 억제)

  • 장용채
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.337-348
    • /
    • 1998
  • Since 1970s, though many effective construction methods have been established to solve soft ground problems which had occurred in the off shore land reclamation and on shore highway construction, lateral movement of structure on soft ground is still a big problem to engineers. In this study an applicability of criteria for determining the lateral movement of the structure in soft ground is examined and most measured data is obtained from 140 bridge abutments in highway construction sites. Characteristics and effectiveness of existing methods that used for deciding amount of lateral movements of abutment are analyzed using the obtained data. From the analysis, a proper method to prevent lateral movement is proposed. This method is confirmed on several case histories which were constructed on marine clay.

  • PDF

A Case Study about Problem EPS Plastic Displacement on High Embankment (고성토 지반의 EPS 소성변형 문제점에 대한 사례연구)

  • Shin, Chang Gun;Seo, Jeong You;Lee, Jong keyn;Chae, Min Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.5-12
    • /
    • 2011
  • Numerous studies on the improvement of low strength for soft ground have been performed. EPS, light weight filling material, is used at the study site for stability on consolidation settlement. However, several problems such as settlement of pavement layer and damage of curb occurs. The elevation is lower 1 m than that of designed value by consolidation. It is caused by excessive load during construction. In this study, problems due to overloading on the soft ground where the EPS is used were analyzed and some cases for reasonable improvement method were described. From the results, instructions for design and construction are suggested.

Study on physical performance of lightweight foam concrete using oyster shells according to unit cement content (굴 패각을 사용한 경량기포 콘크리트의 단위시멘트량에 따른 물리적 성능에 관한 연구)

  • Hong, Snag-hun;Shin, Joung-Hyeon;Shin, Dong-uk;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.102-103
    • /
    • 2020
  • Research for heat insulation of buildings is being carried out, in which a heat exchange barrier is used around the openings and balcony parts as a method for heat exchange blocks. However, the preparation for a fire is inadequate. In order to improve the EPS used as a heat exchange barrier in an attempt to solve this, there is a study on lightweight foamed concrete, but as the amount of EPS used for strengthening fire resistance increases, it becomes lower. There is no strength applied to buildings, and also. There is a limit to the amount of EPS used. In the study, we use oyster shells to secure the EPS replacement rate limit of lightweight Foamed concrete, and try to measure the change of physical properties depending on the unit cement content.

  • PDF

Experimental and numerical investigation of expanded polystyrene (EPS) geofoam samples under monotonic loading

  • Khalaj, Omid;Siabil, Seyed Mohammad Amin Ghotbi;Azizian, Mehran;Tafreshi, Seyed Naser Moghaddas;Masek, Bohuslav;Kepka, Miloslav;Kavalir, Tomas;Krizek, Michal;Jirkova, Hana
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.475-488
    • /
    • 2020
  • The recent increase in the use of Expanded Polystyrene (EPS) geofoam in construction and geotechnical projects has driven researchers to investigate its behavior, more deeply. In this paper, a series of experimental tests to investigate the stress-strain behavior and the mechanical properties of EPS blocks, under monotonic axial loading are presented. Four different densities of cylindrically shaped EPS with different dimensions are used to investigate the effects of loading rate, height and diameter, as well as the influence of the density of EPS on the stress-strain response. The results show that increasing the height of the EPS samples leads to instability of the sample and consequent lower resistance to the applied pressure. Large EPS samples show higher Young's modulus and compressive resistance due to some boundary effects. An increase in the rate of loading can increase the elastic moduli and compressive resistance of the EPS geofoam samples, which also varies depending on the density of the samples. It was also determined that the elastic modulus of EPS increases with increasing EPS density. By implementing an efficient numerical procedure, the stress-strain response of EPS geofoam samples can be reproduced with great accuracy. The numerical analysis based on the proposed method can used to evaluate the effect of different factors on the behavior of EPS geofoam.

Application of EPS Considering Long-term Durability (장기내구성을 고려한 EPS의 현장 적용성)

  • Chun, Byungsik;Jung, Changhee;Ahn, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • L/EPS, manufactured in the shape of block and used for civil engineering, is a lightweight material with an excellent resistance to compression, and provides a superb self-sufficient stability. EPS is a suitable material capable of resolving the problem of settlement and lateral flow if it is applied as the soil on soft ground. The Korean Standards (KS) has not yet proposed any testing method for use of EPS as an engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. The design criteria for EPS has been established and applied through the trial construction of KHC (Korea Highway Corporation) and quality test of manufacturer, but most studies on them have been confined to factory products. This study is focused on comparing and analyzing long-term durability by conducting cyclic load test, freezing and thawing test, absorption rate test and others. EPS used in the test was chosen from construction sites and factory products, focusing on the long-term durability of EPS depending on the passage of time. Unconfined compression test results indicated that the strength of collected samples was lower than factory products. While the triaxial compression test results indicated that the shear strength increased in proportion to the increase of confining pressure, and factory products had declining shear strength as the confining pressure rose.

  • PDF