• Title/Summary/Keyword: EPDM rubbers

Search Result 18, Processing Time 0.022 seconds

Reliability Analysis and Feilure Mechanisms of Coolant Rubber Hose Materials for Automotive Radiator (자동차 냉각기 고무호스용 재질에 대한 신뢰성 평가 및 고장메커니즘규명)

  • Kwak Seung-Bum;Choi Nak-Sam;Kang Bong-Sung;Shin Sei-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.152-162
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under the thermal and mechanical loadings. In this study, test analysis was carried out for evaluating the degradation and failure mechanisms of coolant hose materials. Two kinds of EPDM rubber materials applicable to the hoses were adopted: commonly-used ethylene-propylene diene monomer(EPDM) rubbers and EPDM rubbers with high resistance against electro-chemical degradation (ECD). An increase of surface hardness and a large reduction of failure strain were shown due to the formation of oxidation layer for the specimens which had been kept in a high temperature air chamber. Coolant ageing effects took place only by an amount of pure thermal degradation. The specimens degraded by ECD test showed a swelling behavior and a considerable increase in weight on account of the penetration of coolant liquid into the skin and interior of the rubber specimens. The ECD induced material softening as well as drastic reduction in strength and failure strain. However EPDM rubbers designed for high resistance against ECD revealed a large improvement in reduction of failure strain and weight. This study finally established a procedure for reliability analysis and evaluation of the degradation and failure mechanisms of EPDM rubbers used in coolant hoses for automobile radiators.

Rheological Properties of EPM end EPDM Rubbers (EPM 및 EPDM 고무의 유변학적 특성)

  • Kim, Byung-Kyu;Kim, Chang-Kee;Park, Chan-Young
    • Elastomers and Composites
    • /
    • v.25 no.2
    • /
    • pp.97-102
    • /
    • 1990
  • Linear viscoelastic properties of 11 types of EPDM and 1 type of EPM rubbers have been measured at $210^{\circ}C$, using a RDS(Rheometrics dynamic spectrometer). The data base, i.e., complex viscosity, storage modulus, loss modulus, loss tangent and relaxation spectrum of the sample should be useful for rubber blending and compounding.

  • PDF

Determination of Shock Absorption Performance and Shear Modulus of Rubbers by Drop Impact Test (낙하충격실험을 통한 고무의 충격흡수성능과 전단계수 평가)

  • Kang, Dong-Hwan;Seo, Mu-Yeol;Gimm, Hak-In;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.321-328
    • /
    • 2009
  • Shock absorption performances of various rubbers were investigated by using drop impact test. Several types of rubber such as NR, NBR, EPDM, SR and PUR with three respective levels of shore hardness were used for the test. As in the cases, the absorbed impact energies in rubbers were measured under seven different loads against impact energy between 5-80J. The impact absorption efficiencies of the rubbers then were evaluated by means of both single impact energy condition and summation of all impact energy applied condition. As shown in the results, PUR and EPDM have better shock absorption performances than other rubbers. Further analysis was extended to determine a shear modulus of SR through the finite element implementation with Blatz-Ko model. As can be seen, relatively higher level of absorption energy results in a decreasing shear modulus.

Accelerated Life Prediction of Ethylene-Propylene Diene Monomer Rubber Subjected to Combined Degradation (복합노화를 받는 EPDM 고무의 가속수명예측)

  • Han, Seung Wook;Kwak, Seung Bum;Choi, Nak Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.505-511
    • /
    • 2014
  • The EPDM(ethylene-propylene diene monomer) rubbers used for manufacturing engine radiator hoses can be degraded by locally generated electrical stress in addition to thermal and mechanical stresses. This study presents an accelerated life prediction of the EPDM rubber under electrochemical stresses using the Arrhenius formula under various aging temperatures($60^{\circ}C$, $80^{\circ}C$, and $100^{\circ}C$). The modified life prediction formula considers the relationship between the gradient($E_a/R$) and the Arrhenius constant(C). The effects of tensile strain(5%, 10%) on the life of these rubbers were investigated. The aging temperature influences EPDM rubber life, and tensile strain was predicted. It was confirmed that the modified life prediction was within the data deviation level of the test.

Covulcanization and Ozone resistance for Unsaturated and Saturated Rubbers (불포화 고무와 포화 고무의 공가류 및 내오존성)

  • Lim, Won-Woo;Jung, Il-Taek;Han, Min-Hyun
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.32-38
    • /
    • 2001
  • Effects of the ratio of rubber composition on covulcanization and ozone resistance were studied in this study. Specimens used in this study were rubber compounds(specimen-A) blended with various ratio of NR, SBR, BR, IIR, and EPDM, unsaturated rubber compounds(specimen-B) with NR/BR/SBR, and saturated rubber compounds(specimen-C) with NR/IIR/EPDM. PAD adhesion specimen was prepared from vulcanizing specimen-A and B, and specimen-A and C, respectively. Using same adhesion specimen, peel strength was measured and tested ozone resistance. In specimen-A, peel strength was higher with increasing NR ratio for NR and BR contained blends. In other specimen-A containing NR and SBR, the peel strength was also increased with increasing SBR ratio. NR/BR/IIR/EPDM rubber compounds had also better adhesion property than NR/SBR/IIR/EPDM compounds. As more unsaturated rubber was blended, the peel strength was higher but ozone resistance was worse. Optimum ratio of unsaturated and saturated rubbers for the peel strength and ozone resistance was 60/40.

  • PDF

Nondestructive Characterization of Degradation of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM고무의 노화에 대한 비파괴 특성평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Choi, Youn-Joung;Shin, Sei-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.368-376
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. In this study, for EPDM(ethylene-propylene diene monomer) rubber conventionally used as a radiator hose material the aging behaviors of the skin part due to thermo-oxidative and electro-chemical stresses were nondestructively evaluated. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens degraded by electro-chemical degradation(ECD) test increased, whereas their. failure strain and IRHD hardness decreased largely. The penetration of coolant liquid seemed to induce some changes in inner structure and micro hardness distribution of the rubbers. Consequently, EPDM rubbers degraded by thermo-oxidative aging and ECD could be characterized nondestructively by micro-hardness and chemical structure analysis methods.

Evaluation of Dynamic Characteristics of Rubber Materials Using a Double Cantilever Sandwich Beam Method (양팔 샌드위치보 시험법에 의한 EPDM고무의 동특성 평가 연구)

  • Kim, Kwang-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1393-1400
    • /
    • 2002
  • A double cantilever sandwich-beam method has been applied to the evaluation of the frequency dependence of dynamic elastic modulus and material loss factor of EPDM rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Effects of the rubber layer length on the dynamic characteristics were also investigated: reliable values were measured when the length of the inserted rubber layer was larger than and equal to 50% of the effective specimen length. The values were compared with those obtained by the dynamic mechanical analysis and the simple resonant test. Relationships of the dynamic characteristics of rubbers with frequency could be determined using the least square error method.

Modification of EPDM Rubbers for Enhancement of Environmental Durability of Aerator Membrane (산기관용 멤브레인 고무판의 환경내구성 향상을 위한 EPDM 고무의 개질)

  • Ahn, Won-Sool
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.107-112
    • /
    • 2008
  • A study on the enhancement of environmental durability of EPDM rubber materials for the aerator membrane was performed using a butyl rubber as a modifier. A conventional EPDM rubber formulation was evaluated as having about 26.0 wt% or more oil content from the chloroform immersion test. These oils would be gradually and continuously deleted from the aerator membrane when directly exposed to a waste-water or chemically corrosive fluids, making the membrane less flexible and the performance worse. To improve this, a butyl rubber (IIR) was utilized as the modifier for a low-ENB type of EPDM rubber formulation with low-oil content. The environmental durability of the IIR-modified EPDM rubber material was expected to be greatly enhanced compared to the conventional one. However, the mechanical and performance properties such as elongation, tensile strength, and air bubble size, etc. were still maintained as good as in the conventional one. Furthermore, TGA analysis of the IIR-modified EPDM material showed that there would be partially compatible between IIR and EPDM. It also showed that the initial degradation temperature of the IIR-modified EPDM could be somewhat increased, exhibiting the enhanced compatibility among the components and, thereby, more enhanced environmental durability.

Studies on Adhesion Properties of Grafted EPDM Containing Carboxylic Acid Group (카르복시산을 포함하는 Grafted EPDM의 접착특성에 관한 연구)

  • Kim, Dongho;Yoon, Yoomi;Chung, Ildoo;Park, Chanyoung;Bae, Jongwoo;Oh, Sangtaek;Kim, Guni
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The effect of the grafting ratio on the mechanical property and adhesion property of the grafted EPDM modified with methacrylic acid (MA) was investigated. The storage modulus of MA-grafted EPDM was maintained higher than that of cross-linked EPDM vulcanizate by sulfur, but it was observed that the storage modulus was decreased at elevated temperature because of the weakened secondary bonding. When the functional group for hydrogen bonding was introduced in EPDM, it had excellent mechanical properties by the aggregate between grafted EPDM molecules and crystallinity of MA. The bonding strength between EPDM and other rubbers was very low because EPDM has nonpolar property and low molecular interaction to others. The bonding strength was increased as increasing grafting ratio and it was excellent enough to break the rubber during the peel test when the grafting ratio was more than 10%.

Modification of Rubbers through Chemical Reactions including Controlled/"living" Radical Polymerization Techniques (리빙라디칼 중합법을 포함한 화학적 방법에 의한 고무의 개질)

  • Joo, Sang-Il;Cho, Hyun-Chul;Lee, Seong-Hoon;Hong, Sung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.122-133
    • /
    • 2009
  • Rubbers, such as natural rubber, polybutadiene, styrene-butadiene rubber, nitrile-butadiene rubber, chlorinated rubber and EPDM, have been continuously improved in response to a heavy demand and a new property requirement from industry. One of the best ways to realize the improvement is the modification of rubbers through chemical reactions, which produce materials with novel properties. In this review, chemical modification reactions of rubbers that contain carbon-carbon double bond units either in their main backbone or as a side group were briefly summarized. The chemical reactions introduce functional groups or functional polymer chains to polymer backbone, which transform a classical rubber to a highly functional material. Especially, we focused on a controlled/"living" radical polymerization techniques, with which a revolutionary broadening of the spectrum of the materials with well defined molecular weight, molecular weight distribution, chain end-functionality and architectures become possible.