• Title/Summary/Keyword: EPB tunnel

Search Result 48, Processing Time 0.027 seconds

Case Study of Shield Tunnel Construction : Incheon Metro Line 1 Geomdan Extension Phase 1 Project (쉴드TBM 터널 시공 사례 : 인천도시철도1호선 검단연장선 1공구)

  • Byungkwan Park;Chaeman Joo;Dohak Huh;Hyunsup Song;Gwangsu Joo;Dohoon Kim;Minsang Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.185-195
    • /
    • 2024
  • The Incheon Metro Line 1 Geomdan Extension Phase 1 is the first project in South Korea where both a roadheader and TBM (Tunnel Boring Machine) are being used together. The shield TBM tunnel section is 1,057 m long, and is mostly composed of rock, including the section beneath the Airport Railroad and the Gyeongin Ara Waterway. A 7.8 m earth pressure balance shield TBM was used for tunnel excavation. The average monthly advance rate for both the North and South tracks is 239.1 m, with a maximum monthly advance rate of 334.5 m. This technical article comprehensively evaluates the productivity of the shield TBM, focusing on the TBM excavation performance. Above all, it aims to provide useful reference material for the successful execution of shield TBM tunnel construction.

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

A Study of Shield TBM Tunnelling-induced Volume Loss Estimation Considering Shield Machine Configurations and Driving Data (쉴드 TBM의 장비 형상 및 굴진 데이터를 고려한 체적손실 산정 연구)

  • Park, Hyunku;Chang, Seokbue;Lee, Seungbok
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.397-407
    • /
    • 2015
  • Estimation of shield TBM tunnelling-induced volume loss is of great importance for ground settlement control. This study proposed a simple method for evaluation of volume loss during TBM tunnlling, which is able to take into account of shield machine configurations and main driving data in calculation. The method was applied to analyze the tunnelling cases with earth pressure balanced and slurry pressure balanced shiled TBM, and mostly, reasonable agreements with monitoring results were found. Additional discussions were made for some disagreements.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.

Shear behavior of foam-conditioned gravelly sands: Insights from pressurized vane shear tests

  • Shuying Wang;Jiazheng Zhong;Qiujing Pan;Tongming Qu;Fanlin Ling
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.637-648
    • /
    • 2023
  • When an earth pressure balance (EPB) shield machine bores a tunnel in gravelly sand stratum, the excavated natural soil is normally transformed using foam and water to reduce cutter wear and the risk of direct muck squeezing out of the screw conveyor (i.e., muck spewing). Understanding the undrained shear behavior of conditioned soils under pressure is a potential perspective for optimizing the earth pressure balance shield tunnelling strategies. Owing to the unconventional properties of conditioned soil, a pressurized vane shear apparatus was utilized to investigate the undrained shear behavior of foam-conditioned gravelly sands under normal pressure. The results showed that the shear stress-displacement curves exhibited strain-softening behavior only when the initial void ratio (e0) of the foam-conditioned sand was less than the maximum void ratio (emax) of the unconditioned sand. The peak and residual strength increased with an increase in normal pressure and a decrease in foam injection ratio. A unique relation between the void ratio and the shear strength in the residual stage was observed in the e-ln(τ) space. When e0 was greater than emax, the fluid-like specimens had quite low strengths. Besides, the stick-slip behavior, characterized by the variation coefficient of measured shear stress in the residual stage, was more evident under lower pressure but it appeared to be independent of the foam injection. A comparison between the results of pressurized vane shear tests and those of slump tests indicated that the slump test has its limitations to characterize the chamber muck fluidity and build the optimal conditioning parameters.

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

A study on the face pressure control and slurry leakage possibility using shield TBM model test (축소 모형실험을 통한 토피조건별 이수압식 쉴드 TBM의 챔버압 및 이수분출 가능성 평가)

  • Koh, Sungyil;Shin, Hyunkang;La, You-Sung;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Shield TBM is a tunnelling method that has a wider range of applications in the poor ground condition compared to conventional tunnels (Drill and Blast). Currently, a 13.3 m large-diameter slurry shield TBM is preparing for construction to pass under the Han River. Shield TBM is divided into slurry and EPB shield TBM, and management items during construction are different depending on each characteristic. In this paper, the equipment type, origin, application case and trouble case were analyzed for slurry shield TBM, which is mainly constructed in soft ground. In addition, 2D and 3D model tests were conducted on the condition of soil depth for the possibility of slurry leakage into front of the equipment, with appropriate chamber pressure. Based on this paper, it proposed to provide basic and reference data for proper excavation surface pressure and chamber pressure during construction of slurry shield TBM under soft ground conditions, and proposed measures to minimize stability and environmental decline due to slurry ejection.