• Title/Summary/Keyword: EPA (Eicosapentaenoic acid)

Search Result 216, Processing Time 0.027 seconds

Fatty Acid Composition and Sensory Characteristics of Eggs Obtained from Hens Fed Flaxseed Oil, Dried Whitebait and/or Fructo-oligosaccharide

  • Yi, Haechang;Hwang, Keum Taek;Regenstein, Joe M.;Shin, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1026-1034
    • /
    • 2014
  • This study was conducted to assess the effects of flaxseed oil and dried whitebait as a source of ${\omega}$-3 fatty acids (${\omega}$-3 FA), which could be used to produce eggs enriched with ${\omega}$-3 FA, and of fructo-oligosaccharide (FOS) as a source of prebiotics on performance of hens (commercial Hy-Line Brown laying hens), and FA composition, internal quality, and sensory characteristics of the eggs. Dietary FOS increased egg weight. The amounts of ${\alpha}$-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) in the eggs from the hens fed the flaxseed oil alone or flaxseed oil+dried whitebait diets were higher than those of the control. Hedonic scores for off-flavor, fishy flavor, buttery taste and overall acceptability of the eggs from the hens fed the diet containing flaxseed oil+dried whitebait were lower (p<0.05) than those of the control. Overall acceptability of the eggs from the hens fed the diet containing soybean oil+dried whitebait was lower (p<0.05) than that of the control. However, all the sensory attributes of the eggs from the hens fed the diet containing flaxseed oil, dried whitebait and FOS were not significantly different from those of the control. These results confirmed that flaxseed oil increases the ALA content in the eggs and a combination of flaxseed oil and dried whitebait increases EPA and DHA in the eggs. Of significance was that addition of FOS to the flaxseed oil+dried whitebait diet improves the sensory characteristics of the eggs enriched with ${\omega}$-3 FA.

Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk

  • Moghadam, Farideh Vahid;Pourahmad, Rezvan;Mortazavi, Ali;Davoodi, Daryoush;Azizinezhad, Reza
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.309-323
    • /
    • 2019
  • Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.

Fatty Acid Profiles of Ten Muscles from High and Low Marbled (Quality Grade 1++ and 2) Hanwoo Steers

  • Hwang, Young-Hwa;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.679-688
    • /
    • 2016
  • The aim of this research was to evaluate: 1) the fatty acid profile of ten muscles from high marbled (HM, quality grade 1++) and low marbled (LM, quality grade 2) Hanwoo carcass, 2) the relationship between the fatty acid profile and sensory traits. There were significant (p<0.001) differences in fat content and fatty acid composition among the 10 muscles obtained from HM and LM Hanwoo steers. The proportions of SFA (saturated fatty acid), MUFA (monounsaturated fatty acid) and PUFA (polyunsaturated fatty acid) were significantly (p<0.001) different among the 10 muscles due to differences in all fatty acids except eicosapentaenoic acid (EPA, C20:5n-3). The high-fat muscles had a lower n-6/n-3 ratio compared to the low-fat muscles (p<0.001). LM muscles had a significantly (p<0.05) higher proportion of SFA than HM muscles due to a higher proportion of stearic acid (C18:0). On the contrary, HM muscles had a significantly (p<0.01) higher proportion of MUFA than LM muscles due to higher oleic acid (C18:1n-9) proportion. SFA had a significant correlation with CIE a* (r=0.281; p<0.01) and drip loss (%) (r=−0.233; p<0.001). Cooking loss (%) had a significantly (p<0.05) negative correlation with PUFA (r=−0.233; p<0.05). Overall palatability was positively correlated with SFA (r=0.262; p<0.01), but negatively correlated with PUFA (r=−0.567; p<0.001). There was no significant correlation between oleic acid and any of the sensory traits (p>0.05).

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods (초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성)

  • Park, Jin-Seok;Cho, Yeon-Jin;Jeong, Yu-Rin;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2019
  • In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

Effect of intake of dried mackerel on fatty acid compositions in liver and nervous tissue (건조 고등어 섭취가 마우스의 간 및 신경조직의 지방산 조성에 미치는 영향)

  • Choi, Hyung-Ju;Kim, Kyung-Kun;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.546-551
    • /
    • 2007
  • The purpose of this investigation was to determine the effect of feeding dried mackerel as a means of increasing the intake of these n-3 polyunsaturated fatty acids on fatty acid compositions in liver and nervous tissue. Twenty male mice aged at 4 weeks were fed on the control (5% palm oil, control group) and 5% dried mackerel diets (mackerel group) for four weeks. In fatty acid compositions of liver and cortex, levels of total n-3 fatty acid, specially docosahexaenoic (22:6n-3, DHA) and eicosapentaenoic (20:5n-3, EPA) acids, were increased in the mackerel group compared to the control group, while docosapentaenoic acid (22:5n-6, DPAn-6) levels were decreased (p<0.05). In cerebellum and retina, levels of DHA were not significantly different between the control and mackerel groups, but levels of total n-6 fatty acids and arachidonic acid (20:4n-6, AA) were decreased in the mackerel group. These results indicated that intake of 5% dried mackerel increased levels of n-3 polyunsaturated fatty acids in cortex. Thus, we will investigate the relationship between brain function and cortex fatty acid compositions following intake of mackerel by assessing discrimination leaning ability.

Effects of the Feeding Mixture of Mushrooms and Vegetables Oils on the Lipid Component and Fatty Acid Composition of Liver in Rats (식용버섯과 식물성 유지의 혼합급여가 흰쥐 간장의 지질성분 및 지방산 조성에 미치는 영향)

  • 김군자;김한수;김희숙;최운정;정승용;김성희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.5
    • /
    • pp.736-742
    • /
    • 1994
  • This study was designed to observe the effects of the mixed diets of edible mushrooms and vegetables oils on the lipid component and fatty acid composition in liver of the diet induced hydpercholesterolemic rats. Ten groups of male S.D. rats were fed a basal diet supplemented with 5% of one of three mushrooms(G.I, L.e, A.j) and 10% of one of three vegetable oils (olive ,safflower perilla) for three weeks. In liver, total cholesterol concentration was significantly low in group 3 (olive oil 10 % + L. edodes 5%) and 6 (safflower oil 10 % $_2$L. edodes 5%) , triglyceride concentration was low in groups 8 (perilla oil 10 % + g. lucidum 5%) and 9 (perilla oil 10% + L. edodes 5%) and phospholipid concentration was significantly low in groups 3, 5, (safflower oil 10 % + G.lucidum 5%), 6, 7 (safflower oil 10 % + A .judae 5%) 8, 9 and 10 (perilla oil 10% + a. judae 5%). in the fatty acid composition of total lipid inliver, monounsaturated fatty acid (MUFA) concentration s were high in groups 2 (olive oil 105 + g. lucidum 5%), 3, and 4 (olive oil 10% + A. judae 5%) and all the perilla oil groups, polyunsaturated fatty acid (PUFA) and linoleic aicd concentrations were signifciantly high in all the safflower oil groups. In the fatty acid composition of liver phospholipid , PUFA concentrations were ghih but MUFA concentrations were low. In the triglyceride component, MUFA were some more than saturated fatty acid (SFA) . In the cholesteryl ester component, MUFa concentrations were significantly high. In the fatty acid composition of liver lipid components, linholeic acid was high in the PUFA and so it was major fatty acid. Eicosapentaenoic acid (EPA) of phospholipid component in liver was significantly high.

  • PDF

Effects of $\omega$6 and $\omega$3 Fatty Acid Diets on the Fatty Acid Composition of the Mesenteric and Subcutaneous Fat of Lactating Rats

  • Chung, Hae-Yun;Chung, Eun-Jung;Lee, Yang-Cha-Kim
    • Nutritional Sciences
    • /
    • v.4 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • Long chain polyunsaturated fatty acids (LCPUFA) are important components of brain phospholipds and play important role (s) in brain function. In rats, the maximum brain growth occurs during the period of lactation even though it happens during the third trimester of gestation in human. Since milk contained docosahexaenoic acid (DHA) even through the maternal diet had no DHA and/or a very small amount of its precursor, $\alpha$-linolenic acid ($\alpha$-LnA), an emphasis was given to maternal adipose tissue as a reservoir of this fatty acid. We, therefore, investigated the mesenteric and subcutaneous adipose tissues for their fatty acid composition in dams reared with different fat diets. Diets containing various amounts of $\omega$6 and $\omega$3 fatty acids were given to adult female rats (200-250g) throughout the pregnancy and lactation periods. Diets were composed of 10% (wt/wt) corn oil (CO), soybean oil (SO), perilla seed oil (PO) containing about 60% $\alpha$-LnA, or fish oil (FO) rich in eicosapentaenoic acid (EPA) and DHA. The fatty acid ompositions of mesenteric and subcutaneous fat were measured and evaluated at Day-2 and Day-15 after parturition. In general, major characteristics of dietary fatty acid composition was reflected on the fatty acid composition of adipose tissues. Dietary fatty acid composition was reflected more on mesenteric fat as compared to subcutaneous fat. Mesenteric fat was found to contain less arachidonic acid (AA) and mesenteric fats of CO, SO and PO groups contained less DHA than did the subcutaneous fat. The P/M/S ratios of adipose tissues were similar between experimental groups while dietary P/M/S ratios differed significantly. It was noticeable that a small proportion of DHA was found in the adipose tissues of animals of CO, SO and PO groups (Day-2) and in SO and PO groups (Day-15), the groups which do not contain DHA in their diets. The percentage of DHA in mesenteric fat o CO, SO and PO groups decreased as lactation continues, while the proportion of DHA in FO group increased. Adipose tissues of FO group had higher DHA/EPA ratio as compared to the diet. Considering the fact that the body contains a large amount of adipose tissues, our present finding suggests that the adipose tissue can serve as a reservoir of DHA for pregnant and lactating rats.

  • PDF

Isolation of Off-flavors and Odors from Tuna Fish Oil Using Supercritical Carbon Dioxide

  • Roh, Hyung-Seob;Park, Ji-Yeon;Park, Sun-Young;Chun, Byung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.496-502
    • /
    • 2006
  • Off-flavors and unfavorable odors in tuna fish oil were successfully removed and identified using supercritical carbon dioxide extraction, while retaining variable compounds, polyunsaturated fatty acids such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Samples of oil were extracted in a 100 mL semi-batch stainless steel vessel under conditions which ranged from 8 to 20 MPa and $20\;to\;60^{\circ}C$ with solvent ($CO_{2}$) flows from 10 g/min. GC-MS was used to identify the main volatile components contributing to the off-flavors and odors which included 2-methyl-1-propanol, 2,4-hexadienal, cyclopropane, and octadiene. Analyses of oil extracted at $40^{\circ}C$, 20 MPa showed a 99.8% reduction in dimethyl disulfide. Other significant off-flavors identified were 2-methyl-butene, 3-hydroxy butanal and ethylbenzene.

Effect of Culture Conditions on Characteristics of Growth and Production of Docosahexaenoic acid (DHA) by Schizochytrium mangrovei (배양조건에 따른 Schizochytrium mangrovei의 성장 및 Docosahexaenoic acid의 생산특성)

  • Jeong, U-Cheol;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.144-153
    • /
    • 2014
  • Both docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) have attracted increasing attention since the first epidemiological report on the importance of n-3 essential fatty acids. Lipids in microbial cells play various biological roles and, consequently, much research has been carried out on their role in cell physiology. The lipid composition of microorganisms can exhibit considerable variations depending on environment. The effects of culture conditions, temperature (15, 20, 24, 28, 32 and $36^{\circ}C$), salinity (10, 20, 30, 40 and 50 psu), pH (pH5, 6, 7, 8 and 9), rotation speeds (50, 100, 150 and 200 rpm), carbon sources, nitrogen sources and C/N ratio on the production of docosahexaenoic acid, fatty-acid profiles, and acids secreted to the broth culture by the oleaginous microorganism, Schizochytrium mangrovei (KCTC 11117BP), were studied. Temperature (initially $28^{\circ}C$), salinity (20 psu), pH (pH7), rotation speeds (100 rpm), organism fatty acids, and secreted acids in the broth were varied during cultivation of S. mangrovei. At pH 7.0, S. mangrovei was able to accumulate lipids up to 40% of its biomass, with 13% (w/w) DHA content. The monosaccharides glucose and fructose, and yeast extract were suitable carbon and nitrogen sources, respectively. The primary omega-3 polyunsaturated fatty acid produced was docosahexaenoic acid.

Uses and Values of Perilla (Perilla frutescens var. frutescens) as a Functional Oil Source (기능성 유지자원으로서의 들깨(Perilla frutescens var. frutescens)의 이용과 가치)

  • Choi, Yong-Soon
    • Korean Journal of Plant Resources
    • /
    • v.28 no.1
    • /
    • pp.135-144
    • /
    • 2015
  • The Korean daily intake of vegetable oils has increased about 2.5-fold from 17 g/day to 46 g/day for the last several decades. Perilla (Perilla frutescens var. frutescens) has been cultivated in Korea for a long time as a dietary oil seed which has the highest content of ${\alpha}$-linolenic acid, accounting for nearly 60%. It is known that the main role of ALA is as a precursor to the longer-chain ${\omega}-3$, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), the metabolic products of ${\alpha}$-linolenic acid (ALA, ${\omega}-3$). Dietary ${\omega}-3$ fatty acids reduce inflammation and the risk of chronic diseases such as heart disease, cancer, and arthritis, but they also may act as functional components for cognitive and behavioral function. Thus, ${\alpha}$-linolenic acid is one of the essential nutrients in modern dietary patterns in which much linoleic acid is consumed. Nevertheless, perilla oil, rich in ${\alpha}$-linolenic acid, can be easily oxidized, giving rise to controversies with respect to shelf life, the deterioration of the product's commercial value, and further related toxicity. Recent research using genetic modifications has tried to develop new plant oil seeds that balance the ratio of ${\omega}-6/{\omega}-3$ fatty acids. Such trials could be a strategy for improving an easily oxidizable property of perilla oil due to high ${\alpha}$-linolenic acid. Alternatively, appropriate application of antioxidant to the oil can be considerable.