• Title/Summary/Keyword: EOF Analysis

Search Result 78, Processing Time 0.027 seconds

Temporal and Spatial Variability of Sound Speed in the Sea around the Ieodo (이어도 주변해역에서 수중음속의 시공간적 변동성)

  • Park, Kyeongju
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1141-1151
    • /
    • 2020
  • The impact of sound speed variability in the sea is the very important on acoustic propagation for the underwater acoustic systems. Understanding of the temporal and spatial variability of ocean sound speed in the sea around the Ieodo were obtained using oceanographic data (temperature, salinity). from the Korea Oceanographic Data Center, collected by season for 17 years. The vertical distributions of sound speed are mainly related to seasonal variations and various current such as Chinese coastal water, Yellow Sea Cold Water (YSCW), Kuroshio source water. The standard deviations show that great variations of sound speed exist in the upper layer and observation station between 16 and 18. In order to quantitatively explain the reason for sound speed variations, Empirical Orthogonal Function (EOF) analysis was performed on sound speed data at the Line 316 covering 68 cruises between 2002 and 2018. Three main modes of EOFs respectively revealed 55, 29, and 5% the total variance of sound speed. The first mode of the EOFs was associated with influence of surface heating. The second EOFs pattern shows that contributions of YSCW and surface heating. The first and second modes had seasonal and inter-annul variations.

A Study on the Characteristics of Tropical Cyclone Passage Frequency over the Western North Pacific using Empirical Orthogonal Function (경험적 직교함수를 이용한 북서태평양 열대저기압의 이동빈도 특성에 관한 연구)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Hwang, Ho-Seong;Lee, Sang-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.721-733
    • /
    • 2009
  • A pattern of tropical cyclone (TC) movement in the western North Pacific area was studied using the empirical orthogonal function (EOF) and the best track data from 1951 to 2007. The independent variable used in this study was defined as the frequency of tropical cyclone passage in 5 by 5 degree grid. The $1^{st}$, $2^{nd}$ and $3^{rd}$ modes were the east-west, north-south and diagonal variation patterns. Based on the time series of each component, the signs of first and second mode changed in 1997 and 1991, respectively, which seems to be related to the fact that the passage frequency was higher in the South China Sea for 20 years before 1990s, and recent 20 years in the East Asian area. When the eigen vectors were negative values in the first and second modes and TC moves into the western North Pacific, TC was formed mainly at the east side relatively compared to the case of the positive eigen vectors. The first mode seems to relate to the pressure pattern at the south of Lake Baikal, the second mode the variation pattern around $30^{\circ}N$, and the third mode the pressure pattern around Japan. The first mode was also closely related to the ENSO and negatively related to the $Ni\tilde{n}o$-3.4 index in the correlation analysis with SST anomalies.

Time Series Analysis of the Subsurface Oceanic Data and Prediction of the Sea Surface Temperature in the Tropical Pacific (적도 태평양 아표층 자료의 시계열 분석 및 표층 수온 예측)

  • Chang You-Soon;Lee Da-Un;Youn Yong-Hoon;Seo Jang-Won
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.706-713
    • /
    • 2005
  • Subsurface oceanic data (Z20; Depth of $20^{\circ}C$ isotherm and WWV; Warm Water Volume) from the tropical Pacific Ocean from 1980 to 2004 were utilized to examine upper ocean variations in relation to E1 Nino. Time series analysis using EOF, composite, and cross-correlation methods indicated that there are significant time delays between subsurface oceanic parameters and the Nino3.4 SST. It implied that Z20 and WWV would be more reliable predictors of El Nino events. Based on analyzed results, we also constructed neural network model to predict the Nino3.4 SST from 1996 to 2004. The forecasting skills for the model using WWV were statistically higher than that using the trade wind except for short range forecasting less than 3 months. This model greatly predicted SST than any other previous statistical model, especially at lead times of 5 to 8 months.

Relationship between the Organic Content, Heavy Metal Concentration and Anaerobic Respiration Bacteria in the Sediments of Shiwha-ho (시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성호흡세균과의 상관관계)

  • 현문식;장인섭;박형수;김병홍;김형주;이홍금;권개경
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.252-259
    • /
    • 1999
  • Anoxic sediments collected from Shiwha-ho area were used to find the relationship between the heavy-metal, organic content and anaerobic respiration bacteria by most probable number (MPN) method. Analysis of the sediments showed that COD content was higher in the sediments collected from Ansan-cheon and Shiwha-ho than those collected from sea area nearby. Particularly noticeable was the fact that heavy metal concentration was much higher in the sediments of Shiwha-ho area contaminated by heavy-metal, although they were rich in electron donor and electron acceptor for Fe(III)-reducing bacteria using lactate as an electron donor was in the range of 1.1$\times$106-4.6$\times$107MPNs/ml in the sediments collected from the sea-side of the lake, which were lower in heavy-methal concentration and higher in Fe-Mn content than those from other region. The number of Fe(III)-reducing bacteria using acetate as an electron donor was in the rang eof 4.3$\times$102-8.1$\times$105MPNs/ml in the same sediments. Chromate-reducing bacteria were more populated(4.6$\times$104-8.1$\times$105MPNs/ml) in the sediments contaminated by heavy metals. The number of sulfate-reducing bacteria wee counted in the sediments collected from the more contaminate inner-side than those from the sea-side of the lake.

  • PDF

A Change of Large-scale Circulations in the Indian Ocean and Asia Since 1976/77 and Its Impact on the Rising Surface Temperature in Siberia

  • Lim, Han-Cheol;Jhun, Jong-Ghap;Kwon, Won-Tae;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.660-670
    • /
    • 2009
  • This study examines the changes of an interdecadal circulation over the Asian continent to find cause of the surface warming in Siberia from 1958 to 2004. According to our study, there is a coherency between a long-term change of sea surface temperature in the Indian Ocean and the rapid increase of air temperature in Siberia since 1976/1977. In this study, we suggest that mean wind field changes induced by the positive sea surface temperature anomalies of the Indian Ocean since 1976/1977 are caused of inter-decadal variations in a large-scale circulation over the Asian continent. It also indicates that the inter-decadal circulation over the Asian continent is accompanied with warm southerly winds near surface, which have significantly contributed to the increase of surface temperature in Siberia. These southerly winds have been one of the most dominant interdecadal variations over the Asian continent since 1976/1977. In addition, we investigated the long-term trend mode of 850 hPa geopotential height data over the Asian continent from the Empirical Orthogonal Function (EOF) analysis for 1958-2004. In result, we found that there was an anomalously high pressure pattern over the Asian continent, it is called 'the Asian High mode'. It is thus suggested that the Asian High mode is another response of interdecadal changes of large-scale circulations over the Asian continent.

Recent Morphological Changes off the Shoreface of Jinwoodo and Sinjado in the Nakdong River Estuary: 2007-2012 (낙동강 하구역 진우도와 신자도 전면의 최근 지형 변화: 2007년-2012년)

  • Park, Jinku;Khim, Boo-Keun;Lee, Hee Jun;Lee, Sang Ryong
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.87-101
    • /
    • 2014
  • Recently, more attention has been paid to the geomorphological changes in the Nakdong River Estuary, because those changes are caused by artificial activities including weirs, reclamation and construction. In order to analyze quantitatively the recent geomorphological variability in the Nakdong River Estuary, we surveyed the depth and elevation of submarine topography near Jinwoodo and Sinjado from March 2007 to February 2012. A statistical method (based on Digital Shoreline Analysis System) and an Empirical Orthogonal Functions method were used to evaluate the morphological changes. According to the statistical variables (DCE, NDC, EPR, LRR), the highest amount and rate of accumulation were recorded around the Gadeokdo whereas the greatest amount of erosion appeared around the coast off the eastern part of Sinjado. In particular, a dynamic variation of morphology was clearly observed in the vicinity of the sub-tidal channel located between Jinwoodo and Sinjado, which seems to be attributable to channel migration. As a result of the EOF method, the first mode (48.7%) is most closely related to the pattern of morphological variability that might be associated with the westerly movement of sediment by longshore current. The spatial variability of the second mode (16.6%) was high in the shoreface of Sinjado, showing a 4-year periodicity of temporal variability. The strong correlation (coefficient 0.73) between the time coefficient and suspended sediment discharge from Nakdong River emphasizes the role of sediment discharge to deposition in this area. The spatial variability of the third mode (11.3%) was distributed mainly around the coast off the eastern part of Sinjado, which is related to the movement of the coastline of Sinjado. Based on the last 5 year's data, our results suggest that the study area is characterized on the whole by a depositional pattern, but the extent of sedimentation is different locally.

Present-Day Climate of the Korean Peninsula Centered Northern East Asia Based on CMIP5 Historical Scenario Using Fine-Resolution WRF (CMIP5 Historical 시나리오에 근거한 WRF를 이용한 한반도 중심의 동북아시아 상세기후)

  • Ahn, Joong-Bae;Hong, Ja-Young;Seo, Myung-Suk
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.527-538
    • /
    • 2013
  • In this study, climate over Korea based on the Historical scenario induced by HadGEM2-AO is simulated by WRF. For this purpose, a system that can be used be for numerical integration over the Far East Asian area of the center of the Korean Peninsula with 12.5 km-horizontal resolution was set-up at "Haebit", the early portion of KMA Supercomputer Unit-3. Using the system, the downscaling experiments were conducted for the period 1979-2010. The simulated results of HadGEM2-AO and WRF are presented in terms of 2 m-temperature and precipitation during boreal summer and winter of Historical for the period 1981~2005, compared with observation. As for the mean 2 m-temperature, the general patterns of HadGEM2-AO and WRF are similar with observation although WRF showed lower values than observation due to the systematic bias. WRF reproduced a feature of the terrain-following characteristics reasonably well owing to the increased horizontal resolution. Both of the models simulated the observed precipitation pattern for DJF than JJA reasonably, while the rainfall over the Korean Peninsula in JJA is less than observation. HadGEM2-AO in DJF 2 m-temperature and JJA precipitation has warm and dry biases over the Korean Peninsula, respectively. WRF showed cold bias over JJA 2 m-temperature and wet bias over DJF precipitation. The larger bias in WRF was attributed to the addition of HadGEM2-AO's bias to WRF's systematic bias. Spatial correlation analysis revealed that HadGEM2-AO and WRF had above 0.8 correlation coefficients except for JJA precipitation. In the EOF analysis, both models results explained basically same phase changes and variation as observation. Despite the difference in mean and bias fields for both models, the variabilities of the two models were almost similar with observation in many respects, implying that the downscaled results can be effectively used for the study of regional climate around the Korean Peninsula.

Structures and Variability of the T-S field and the Current across the Korea Strait (대한해협 횡단면 상의 수온-염분과 해류의 구조 및 변동)

  • RO, YOUNG JAE;PARK, MOON-JIN;LEE, SANG-RYONG;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.237-249
    • /
    • 1995
  • To understand the cross-sectional structures of temperature, salinity and current across the Korea Strait, field measurements were carried out for the period of May 2 to 20, 1994. Using the R/V Tam Yang, detailed CTD profiles and ADCP records were obtained and used to examine the mean and variability field on two time scales (15 days and 25 hours). A sharp coastal front in the middle of the Korea Strait exists across which two different water masses, i.e., warm and saline water in the eastern side and cold and less saline water in the western side are neighboring. We observed highly variable field of T and S apparently caused by the westward movement of warm and saline water mass. Short-term fluctuations of T and S in the middle layer are remarkable and their importance was analysed as the first Eigen mode accounting for more than 50% of total variances. The currents in th Korea Strait are strongly influenced by tidal currents with spring and neap variation whose maximum speed ranges 80-90 and 60-70 cm/s respectively near the central portion of the channel. Strong southward tidal current could even mask the Tsushima Current completely. Results of harmonic analysis show that the magnitudes of semidiurnal, diurnal and mean components of currents are comparable to each other at spring and neap tide conditions. The volume transport across the western channel of the Korea Strait were estimated to be 2.1 Sv at neap tide condition and 3.4 Sv at spring tide condition.

  • PDF