• Title/Summary/Keyword: EOF (Empirical Orthogonal Functions)

Search Result 10, Processing Time 0.022 seconds

Application of the Empirical Orthogonal Functions on the GRACE Spherical Harmonic Solutions

  • Eom, Jooyoung;Seo, Ki-Weon
    • Journal of the Korean earth science society
    • /
    • v.39 no.5
    • /
    • pp.473-482
    • /
    • 2018
  • During the period of 2002 to 2017, the Gravity Recovery And Climate Experiment (GRACE) had observed time-varying gravity changes with unprecedented accuracy. The GRACE science data centers provide the monthly gravity solutions after removing the sub-monthly mass fluctuation using geophysical models. However, model misfit makes the solutions to be contaminated by aliasing errors, which exhibits peculiar north-south stripes. Two conventional filters are used to reduce the errors, but signals with similar spatial patterns to the errors are also removed during the filtering procedure. This would be particularly problematic for estimating the ice mass changes in Western Antarctic Ice Sheet (WAIS) and Antarctic Peninsula (AP) due to their similar spatial pattern to the elongated north-south direction. In this study, we introduce an alternative filter to remove aliasing errors using the Empirical Orthogonal Functions (EOF) analysis. EOF can decompose data into different modes, and thus is useful to separate signals from noise. Therefore, the aliasing errors are effectively suppressed through EOF method. In particular, the month-to-month mass changes in WAIS and AP, which have been significantly contaminated by aliasing errors, can be recovered using EOF method.

Short-term Sand Movement Analysis in Hujeong Beach using Empirical Orthogonal Functions (경험고유함수를 이용한 후정해수욕장 단기 모래 이동 분석)

  • Cheon, Se-Hyeon;Suh, Kyung-Duck;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.244-252
    • /
    • 2014
  • EOF (Empirical Orthogonal Function) analysis is applied to investigate the sand movement in Hujeong Beach. For the analysis, the profile data which were observed five times from June 2009 to May 2010 along the 13 baselines were used. To secure the temporal and physical consistency among the 13 profile data, the 13 profile data were combined into one data and using this data the EOF analysis was performed. According to the analysis, the first EOF is related with the mean topography and the second EOF represents the natural variation of sediment migration and the third EOF is related with the along-shore sediment transport arising from storm. The remaining EOFs show no special relation with wave conditions. In conclusion the main factors which are having great effects on Hujeong Beach's sand movement are analyzed as natural variation and along-shore sediment transport owing the wave conditions.

A Study for Brought Characteristics of Gyeonggi-Do Using EOF of SPI (SPI의 EOF분석을 이용한 경기도 지역 가뭄특성 연구)

  • Chang, Yun-Gyu;Kim, Sang-Dan;Choi, Gye-Woon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.867-872
    • /
    • 2005
  • This study introduces a method to evaluate the probability of a specific area to be affected by a drought of a given severity and shows its potential for investigating agricultural drought characteristics. The method is applied to Gyeonggi as a case study. The proposed procedure includes Standard Precipitation Index(SPI) time series, which are linearly transformed by the Empirical Orthogonal Functions(EOF) method, These EOFs are extended temporally with AutoRegressive Moving Average(ARMA) method and spatially with Kriging method. By performing these simulations, long time series of SPI can be simulated for each designed grid cell in whole Gyeonggi area. The probability distribution functions of the area covered by a drought and the drought severity are then derived and combined to produce drought severity-area-frequency(SAF) curves.

  • PDF

Application of DINEOF to Reconstruct the Missing Data from GOCI Chlorophyll-a (GOCI Chlorophyll-a 결측 자료의 복원을 위한 DINEOF 방법 적용)

  • Hwang, Do-Hyun;Jung, Hahn Chul;Ahn, Jae-Hyun;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1507-1515
    • /
    • 2021
  • If chlorophyll-a is estimated through ocean color remote sensing, it is able to understand the global distribution of phytoplankton and primary production. However, there are missing data in the ocean color observed from the satellites due to the clouds or weather conditions. In thisstudy, the missing data of the GOCI (Geostationary Ocean Color Imager) chlorophyll-a product wasreconstructed by using DINEOF (Data INterpolation Empirical Orthogonal Functions). DINEOF reconstructs the missing data based on spatio-temporal data, and the accuracy was cross-verified by removing a part of the GOCI chlorophyll-a image and comparing it with the reconstructed image. In the study area, the optimal EOF (Empirical Orthogonal Functions) mode for DINEOF wasin 10-13. The temporal and spatialreconstructed data reflected the increasing chlorophyll-a concentration in the afternoon, and the noise of outliers was filtered. Therefore, it is expected that DINEOF is useful to reconstruct the missing images, also it is considered that it is able to use as basic data for monitoring the ocean environment.

Climate Prediction by a Hybrid Method with Emphasizing Future Precipitation Change of East Asia

  • Lim, Yae-Ji;Jo, Seong-Il;Lee, Jae-Yong;Oh, Hee-Seok;Kang, Hyun-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1143-1152
    • /
    • 2009
  • A canonical correlation analysis(CCA)-based method is proposed for prediction of future climate change which combines information from ensembles of atmosphere-ocean general circulation models(AOGCMs) and observed climate values. This paper focuses on predictions of future climate on a regional scale which are of potential economic values. The proposed method is obtained by coupling the classical CCA with empirical orthogonal functions(EOF) for dimension reduction. Furthermore, we generate a distribution of climate responses, so that extreme events as well as a general feature such as long tails and unimodality can be revealed through the distribution. Results from real data examples demonstrate the promising empirical properties of the proposed approaches.

A Study of Drought Spatio-Temporal Characteristics Using SPI-EOF Analysis (SPI 가뭄지수의 EOF 분석을 이용한 가뭄의 시공간적인 특성 연구)

  • Chang Yung-Yu;Kim Sang-Dan;Choi Gye-Woon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.691-702
    • /
    • 2006
  • This study introduced a method to evaluate the probability of a specific area to be affected by a drought of a given severity and shows Its potential for investigating agricultural drought characteristics. The method was applied to South Korea as a case study. The proposed procedure included Standardized Precipitation Index(SPI) time series, which were linearly transformed by the Empirical Orthogonal Functions(EOF) method. These EOFs were extended temporally with AutoRegressive Moving Average(ARMA) method and spatially with Kriging method. By performing these simulations, long time series of SPI can be simulated for each designed grid cell in whole area. The probability distribution functions of the area covered by a drought and the drought severity are then derived and combined to produce drought severity-area-frequency(SAF) curves.

Empirical Orthogonal Function Analysis of Surface Pressure, Sea Surface Temperature and Winds over the East Sea of the Korea (Japan Sea) (한국 동해에서의 해면기압, 해수면온도와 해상풍의 경험적 직교함수 분석)

  • NA Jung-Yul;HAN Snag-Kyu;SEO Jang-Won;NOH Yi-Gn;KANG In-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.188-202
    • /
    • 1997
  • The seasonal variability of the sea surface winds over the last Sea of Korea (Japan Sea) is investigated by means of empirical orthogonal function (EOF) analysis. The combined representation of fields of three climatic variables by empirical orthogonal functions is discussed. The eigenvectors are derived from daily sea level pressure, wind speed and 10-day mean sea surface temperature (SST) during 15 years $(1978\~1992)$. The spatial patterns of the mean pressure are characterized by the high pressure in the western part and the low pressure in the eastern part. The spatial distribution of the standard deviation (SD) of pressure are characterized by max SD of 6.6 mb near the Vladivostok, and minima along the coast of the Japan. In Vladivostok, the maxima of SD of SST and south-north wind (WV) were also occurred. The representation of fields of individual meteorological variables by EOF shows that the first mode of the west-east wind (WU) explain over $47.3\%$ of the variance and the second mode of WU represents $30\%$. Especially, the first mode of the WV explain $70.9\%$ of the variance and their time series coefficients show 1-cpy, 0.5-cpy frequency spectrum. The spatial distribution of the first mode eigenvectors of SST are characterized by maximum near Vladivostok. The combined representation of fields of several variables (pressure, wind, SST) reveals that the first mode magnitudes of the variance of the combined eigenvectors (WU-PR) are increased. By means of this result, the 1-year peak and the 6-months peak are remarkable. In the three combined patterns (wind, pressure, SST), the second mode of the eigenvector (wind) is affected by the SST. Their time coefficients of the first mode show noticeable 1-year peak. The spectral analysis of the second mode shows broad seasonal signal with the period of 4-months and a significant peak of variability at 3-month period.

  • PDF

Recent Morphological Changes off the Shoreface of Jinwoodo and Sinjado in the Nakdong River Estuary: 2007-2012 (낙동강 하구역 진우도와 신자도 전면의 최근 지형 변화: 2007년-2012년)

  • Park, Jinku;Khim, Boo-Keun;Lee, Hee Jun;Lee, Sang Ryong
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.87-101
    • /
    • 2014
  • Recently, more attention has been paid to the geomorphological changes in the Nakdong River Estuary, because those changes are caused by artificial activities including weirs, reclamation and construction. In order to analyze quantitatively the recent geomorphological variability in the Nakdong River Estuary, we surveyed the depth and elevation of submarine topography near Jinwoodo and Sinjado from March 2007 to February 2012. A statistical method (based on Digital Shoreline Analysis System) and an Empirical Orthogonal Functions method were used to evaluate the morphological changes. According to the statistical variables (DCE, NDC, EPR, LRR), the highest amount and rate of accumulation were recorded around the Gadeokdo whereas the greatest amount of erosion appeared around the coast off the eastern part of Sinjado. In particular, a dynamic variation of morphology was clearly observed in the vicinity of the sub-tidal channel located between Jinwoodo and Sinjado, which seems to be attributable to channel migration. As a result of the EOF method, the first mode (48.7%) is most closely related to the pattern of morphological variability that might be associated with the westerly movement of sediment by longshore current. The spatial variability of the second mode (16.6%) was high in the shoreface of Sinjado, showing a 4-year periodicity of temporal variability. The strong correlation (coefficient 0.73) between the time coefficient and suspended sediment discharge from Nakdong River emphasizes the role of sediment discharge to deposition in this area. The spatial variability of the third mode (11.3%) was distributed mainly around the coast off the eastern part of Sinjado, which is related to the movement of the coastline of Sinjado. Based on the last 5 year's data, our results suggest that the study area is characterized on the whole by a depositional pattern, but the extent of sedimentation is different locally.

Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometer­observed Wind Speed (NSCAT) over the East (Japan) Sea

  • Park, Kyung-Ae;Kim, Kyung-Ryul;Kim, Kuh;Chung, Jong-Yul;Conillor, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.173-184
    • /
    • 2003
  • Major differences between wind speeds from atmospheric pressure maps (Na wind) and near­surface wind speeds derived from satellite scatterometer (NSCAT) observations over the East (Japan) Sea have been examined. The root­mean­square errors of Na wind and NSCAT wind speeds collocated with Japanese Meteorological Agency (JMA) buoy winds are about $3.84\;ms^{-1}\;and\;1.53\;ms^{-1}$, respectively. Time series of NSCAT wind speeds showed a high coherency of 0.92 with the real buoy measurements and contained higher spectral energy at low frequencies (>3 days) than the Na wind. The magnitudes of monthly Na winds are lower than NSCAT winds by up to 45%, particularly in September 1996. The spatial structures between the two are mostly coherent on basin­wide large scales; however, significant differences and energy loss are found on a spatial scale of less than 100 km. This was evidenced by the temporal EOFs (Empirical Orthogonal Functions) of the two wind speed data sets and by their two­dimensional spectra. Since the Na wind was based on the atmospheric pressures on the weather map, it overlooked small­scale features of less than 100 km. The center of the cold­air outbreak through Vladivostok, expressed by the Na wind in January 1997, was shifted towards the North Korean coast when compared with that of the NSCAT wind, whereas NSCAT winds revealed its temporal evolution as well as spatial distribution.

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -The Vertical Structure of Temperatures in the East Sea of Korea- (한반도 근해의 해류 및 해수특성 -한국 동해의 수온의 수직구조-)

  • NA Jung-Yul;LEE Seong-Wook;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.215-228
    • /
    • 1991
  • In the East Sea of Korea the vertical structure functions of the temperature field were evaluated and the characteristic thermal zone was classified by the use of the empirical orthogonal function(EOF) method. The East Sea of Korea within the hydrographic lines of 10-107 of the Fisheries Research and Development Agency of Korea(FRDA) can be divided into three thermal regions by the characteristics of the vertical temperature variability. They are the North Korean Cold Current(NKCC) region near the coast which extends parallel to the north-south direction, the Warm-Core(WC) region which dominates almost all the hydrographic stations of the Line 104 of the FRDA and occupies a few stations of the Line-103 and -105 with its axis at the Line 104, and the East Korea Warm Current(EKWC) region which is bisected into the northern and the southern part by the WC region, respectively. Considering the two most important modes, $85.20-98.20\%$ of the total variance of temperature variation are explained in the NKCC region, $85.20-92.90\%$ in the EKWC region, and$85.50-91.70\%$ in the WC region. The first mode has its peak value at the surface with the annual cycle of variation. The spatial pattern of the first mode portrays a coherent vertical variation in the EKWC region and a clear anti-correlation both in the NKCC region and in the WC region where the zero-crossing depths are loom and 200m, respectively. The second mode of the NKCC region is particularly noticeable, haying its peak at loom with coherent vertical variation. To study the time dependency of the vertical structure functions, the extended EOF(EEOF) method was used. The persistence of the first mode is less than 4 months in the study area. The annual variation of the first mode in the NKCC region is different from those in the WC region and in the EKWC region.

  • PDF