• Title/Summary/Keyword: EOC

Search Result 197, Processing Time 0.028 seconds

Calibration Slope Adjustment for De-Striping KOMPSAT-1 EOC Images

  • Kang, C.H.;Park, D.J.;Ahn, S.I.;Koo, I.H.;Hyun, D.H.;Yang, H.M.;Kim, D.S.;Keum, J.H.;Choi, H.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1406-1408
    • /
    • 2003
  • KOMPSAT-1 (KOrea Multi-Purpose SATellite ? 1) EOC (Electro Optic Camera) raw images are radiometrically corrected on ground based on the characteristics of EOC. They consist of each CCD (Charge?Coupled Device) pixel’s calibration slope which was measured on ground, electrical gains which are applied to amplify for increasing output pixel counts. Currently, radio-metrically corrected EOC images with calibration slope have still shown defective features by residual stripes. So, it should be compensated by adjusting the calibration slope. In this paper, the adjustment of current calibration slope for de-striping EOC images is addressed and test results are shown.

  • PDF

Construction and Application of a Web-EOC Based Real-Time Monitoring Management System in Steep Slopes (Web-EOC 기반 경사지 실시간 계측관리시스템 구축 및 적용)

  • LEE, Jin-Duk;CHANG, Ki-Tae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.107-119
    • /
    • 2018
  • The slope monitoring systems which have been operating at home and abroad were investigated and then the real-time monitoring management system for evacuating inhabitants based on Web-EOC(Emergency Operating Center) was constructed. We tried to analyze realistically and precisely the situation by changing from the existing field-centered management to sensor-centered management that measures coordinates and provides in real-time data of measuring/monitoring sensors installed at a field site and developing related viewer programs. In addition, the 3D based monitoring management system, which has alarm functions in case of emergency and provides information about the evacuation place, was constructed on the base that is able to expand to nationwide fields by using Vworld 3D map. Ten steep slope monitoring sites were registered on Web-EOC slope monitoring management system constructed in the research and then application instances were suggested.

Aberrant Methylation of RASSF2A in Tumors and Plasma of Patients with Epithelial Ovarian Cancer

  • Wu, Yu;Zhang, Xian;Lin, Li;Ma, Xiao-Ping;Ma, Ying-Chun;Liu, Pei-Shu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1171-1176
    • /
    • 2014
  • Objective: The tumor suppressor gene, Ras-association domain family (RASSF)2A, is inactivated by promoter hypermethylation in many cancers. The current study was performed to evaluate the methylation status of RASSF2A in epithelial ovarian cancer (EOC) tissues and plasma, and correlations with gene expression and clinicopathologic characteristics. Method: We detected methylation of the RASSF2A gene in tissues and corresponding plasma samples from 47 EOC patients and 14 patients with benign ovarian tumors and 10 with normal ovarian tissues. The methylation status was determined by methylation-specific PCR while gene expression of mRNA was examined by RT-PCR. The EOC cell line, SKOV3, was treated with 5-aza-2'-deoxycytidine (5-azadC). Results: RASSF2A mRNA expression was significantly low in EOC tissues. The frequency of aberrant methylation of RASSF2A was 51.1% in EOC tissues and 36.2% in corresponding plasma samples, whereas such hypermethylation was not detected in the benign ovarial tumors and normal ovarian samples. The expression of RASSF2A mRNA was significantly down-regulated or lost in the methylated group compared to the unmethylated group (p<0.05). After treatment with 5-aza-dC, RASSF2A mRNA expression was significantly restored in the Skov3 cell line. Conclusion: Epigenetic inactivation of RASSF2A through aberrant promoter methylation may play an important role in the pathogenesis of EOC. Methylation of the RASSF2A gene in plasma may be a valuable molecular marker for the early detection of EOC.

Upregulation of long non-coding RNA XIST has anticancer effects on epithelial ovarian cancer cells through inverse downregulation of hsa-miR-214-3p

  • Wang, Changhong;Qi, Shan;Xie, Cheng;Li, Chunfu;Wang, Pu;Liu, Dongmei
    • Journal of Gynecologic Oncology
    • /
    • v.29 no.6
    • /
    • pp.99.1-99.11
    • /
    • 2018
  • Objective: The present study is to evaluate the biological functions of long non-coding RNA (lncRNA), X-inactive specific transcript, X-inactive specific transcript (XIST) in human epithelial ovarian cancer (EOC). Methods: XIST was upregulated in EOC cell lines, CAOV3 and OVCAR3 cells by lentiviral transduction. The effects of XIST overexpression on cancer cell proliferation, invasion, chemosensitivity and in vivo tumor growth were investigated, respectively. Possible sponging interaction between XIST and human microRNA hsa-miR-214-3p was further evaluated. Furthermore, hsa-miR-214-3p was overexpressed in XIST-upregulated CAOV3 and OVCAR3 cells to evaluate its effect on XIST-mediated EOC regulation. Results: Lentivirus-mediated XIST upregulation had significant anticancer effects in CAOV3 and OVCAR3 cells by suppressing cancer cell proliferation, invasion, increasing cisplatin chemosensitivity and inhibiting in vivo tumor growth. Hsa-miR-214-3p was confirmed to directly bind XIST, and inversely downregulated in XIST-upregulated EOC cells. In EOC cells with XIST upregulation, secondary lentiviral transduction successfully upregulated hsa-miR-214-3p expression. Subsequently, hsa-miR-214-3p upregulation functionally reversed the anticancer effects of XIST-upregulation in EOC. Conclusion: Upregulation of lncRNA XIST may suppress EOC development, possibly through sponging effect to induce hsa-miR-214-3p downregulation

Enhancement of Classification Accuracy and Environmental Information Extraction Ability for KOMPSAT-1 EOC using Image Fusion (영상합성을 통한 KOMPSAT-1 EOC의 분류정확도 및 환경정보 추출능력 향상)

  • Ha, Sung Ryong;Park, Dae Hee;Park, Sang Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.16-24
    • /
    • 2002
  • Classification of the land cover characteristics is a major application of remote sensing. The goal of this study is to propose an optimal classification process for electro-optical camera(EOC) of Korea Multi-Purpose Satellite(KOMPSAT). The study was carried out on Landsat TM, high spectral resolution image and KOMPSAT EOC, high spatial resolution image of Miho river basin, Korea. The study was conducted in two stages: one was image fusion of TM and EOC to gain high spectral and spatial resolution image, the other was land cover classification on fused image. Four fusion techniques were applied and compared for its topographic interpretation such as IHS, HPF, CN and wavelet transform. The fused images were classified by radial basis function neural network(RBF-NN) and artificial neural network(ANN) classification model. The proposed RBF-NN was validated for the study area and the optimal model structure and parameter were respectively identified for different input band combinations. The results of the study propose an optimal classification process of KOMPSAT EOC to improve the thematic mapping and extraction of environmental information.

  • PDF

The Analysis of 2001 Land Use Distribution of Daejeon Metropolitan City based on KOMPSAT-1 EOC Imagery (KOMPSAT-1 EOC 자료를 활용한 2001년도 대전시 토지이용 현황의 공간적 분포 분석)

  • Kim, Youn-Soo;Jeon, Gap-Ho;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.13-21
    • /
    • 2004
  • The dissemination of commercial satellite images. which have the high spatial resolution such as aerial photos, are the active trend in remote sensing community because of the recent development in satellite and sensor technology. Such high resolution satellite images provide a unique tool for the monitoring of ongoing urban land use change. Especially KOMPSAT-1, which was launched at December 1999 and successfully operated up to now, provides repeatedly panchromatic images over Korean peninsula, which has the spatial resolution of 6.6m. Based upon this KOMPSAT-1 EOC image data we can try to analyze and assess the temporal urban land use change, which could not be done because lack of such data. The aim of this paper is to analyze and assess the spatial land use characteristics of Daejeon Metropolitan City based on KOMPSAT-1 EOC data. The land use map of year 2001 is generated through the modification of the year 2000 land use map, which is published by National Geographic Information Institute, using visual interpretation of KOMPSAT-1 EOC image which is acquired in year 2001. This study can be the start point of the time series analysis of the long term land use change monitoring mit KOMPSAT-1 EOC data.

  • PDF

Organic Matter Sources in a Reservoir (Lake Soyang); Primary Production of Phytoplankton and DOC, and External Loading (식물플랑크톤의 세포외배출유기물을 고려한 소양호의 1차생산과 유기물 부하)

  • Nam, Kung-Hyun;Hwang, Gil-Son;Choi, Kwang-Soon;Kim, Chul-Goo;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.166-174
    • /
    • 2001
  • The autochthonous and allochthonous organic carbon loading were measured in Lake Soyang, to estimate the amount of carbon loading into the lake and the contribution of their sources to tile lake's carbon loading. Autochthonous carbon loading was estimated from phytoplankton primary production with the extracellular organic carbon (EOC). Allochthonous loading was determined by measuring dissolved organic carbon (DOC) and particulate organic carbon (POC) concentration in the main inflowing Soyang River. Both autochthonous and allochthonous organic carbon loading were high during the svmmer, from July to September, and accounted for 43.2% and 71.7% of the annual loading, respectively. Primary productivity was elevated up to $1,000\;mgC\;m^{-2}\;d^{-1}$ during summer and lowest in winter. EOC production from phytoplankton was also large in summer, resulting in a high DOC concentration in the lake water. Primary production of phytoplankton and allochthonous organic matter loading from the watershed contributed to 53.6% and 46.4% of total loading, respectively. The EOC production accounted far $4.4{\sim}21.2%$ of POC primary production, implying that EOC production of phytolankton must be considered in estimation of primary production.

  • PDF

A STUDY FOR THE DETERMINATION OF KOMPSAT I CROSSING TIME OVER KOREA (I): EXAMINATION OF SOLAR AND ATMOSPHERIC VARIABLES (다목적 실용위성 1호의 한반도 통과시각 결정을 위한 연구 (I): 태양 및 대기 변수 조사)

  • 권태영;이성훈;오성남;이동한
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.330-346
    • /
    • 1997
  • Korea Multi-Purpose Satellite I (KOMPSAT-I, the first multi-purpose Korean satellite) will be launched in the third quarter of 1999, which is operated on the sun-synchronous orbit for cartography, ocean color monitoring, and space environment monitoring. The main mission of Electro-Optical Camera(EOC) which is one of KOMPSAT-I sensors is to provide images for the production of scale maps of Korea. EOC collects panchromatic imagery with the ground sample distance of 6.6m at nadir through visible spectral band of 510~730nm. For determining KOMPSAT-I crossing time over Korea, this study examines the diurnal variation of solar and atmospheric variables that can exert a great influence on the EOC imagery. The results are as follows: 1) After 10:30 a.m. at the winter solstice, solar zenith angle is less than $70^{\circ}$ and expected flux of EOC spectral band over land for clear sky is greater than about $2.4mW/cm^2$. 2) For daytime the distribution of cloud cover (clear sky) shows minimum (maximum) at about 11:00 a.m. Although the occurrence frequency of poor visibility by fog decreases from early morning toward noon, its effect on the distribution of clear sky is negligible. From the above examination it is concluded that determining KOMPSAT-I crossing time over Korea between 10:30 and 11:30 a.m. is adequate.

  • PDF

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.

KOMPSAT Data Processing System: Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.331-336
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the Korea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed and archived. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

  • PDF