• Title/Summary/Keyword: EO-1 HYPERION

Search Result 24, Processing Time 0.019 seconds

A Study on Estimation of Water Depth Using Hyperspectral Satellite Imagery (초분광 위성영상을 이용한 수심산정에 관한 연구)

  • Yu, Yeong-Hwa;Kim, Youn-Soo;Lee, Sun-Gu
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.216-222
    • /
    • 2008
  • Purpose of this research is estimation of water depth by hyperspectral remote sensing in area that access of ship is difficult. This research used EO-l Hyperion satellite imagery. Atmospheric and geometric correction is executed. Compress of band used MNF transforms. Diffuse Attenuation Coefficient of target area is decided in imagery for water depth estimation. Determination of Emdmember in pixel is using Linear Spectral Unmixing techniques. Water depth estimated using this result.

  • PDF

Noise Band Elemination of Hyperion Image using Fractal Dimension and Continuum Removal Method (프랙탈 차원 및 Continuum Removal 기법을 이용한 Hyperion 영상의 노이즈 밴드 제거)

  • Chang, An-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.125-131
    • /
    • 2008
  • Hyperspectral imaging is used in a wide variety of research since the image is obtained with a wider wavelength range and more bands than multispectral imaging. However, there are limitations, namely that each band has a shorter wavelength range, the computation cost is increased in the case of numerous bands, and a high correlation between each band and noise bands exists. The previous analysis method does not produce ideal results due to these limitations. Therefore, in the case of using the hyperspectral image, image analysis after eliminating noise bands is more accurate and efficient. In this study, noise band elimination of the hyperspectral image preprocessing is highlighted, and we use fractal dimension for noise band elimination. The Triangular Prism Method is used, being the typical fractal dimension method of the curved surface. The fractal dimension of each band is calculated. We then apply the Continuum Removal method to normalize. A total of 35 bands are estimated by noise band with a threshold value that is obtained empirically. The hyperion hyperstpectral image collected on the EO-1 satellite is used in this study. The result delineates that noise bands of the hyperion image are able to be eliminated with the fractal dimension and Continuum Removal method.

Extraction of Water Depth in Coastal Area Using EO-1 Hyperion Imagery (EO-1 Hyperion 영상을 이용한 연안해역의 수심 추출)

  • Seo, Dong-Ju;Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.716-723
    • /
    • 2008
  • With rapid development of science and technology and recent widening of mankind's range of activities, development of coastal waters and the environment have emerged as global issues. In relation to this, to allow more extensive analyses, the use of satellite images has been on the increase. This study aims at utilizing hyperspectral satellite images in determining the depth of coastal waters more efficiently. For this purpose, a partial image of the research subject was first extracted from an EO-1 Hyperion satellite image, and atmospheric and geometric corrections were made. Minimum noise fraction (MNF) transformation was then performed to compress the bands, and the band most suitable for analyzing the characteristics of the water body was selected. Within the chosen band, the diffuse attenuation coefficient Kd was determined. By deciding the end-member of pixels with pure spectral properties and conducting mapping based on the linear spectral unmixing method, the depth of water at the coastal area in question was ultimately determined. The research findings showed the calculated depth of water differed by an average of 1.2 m from that given on the digital sea map; the errors grew larger when the water to be measured was deeper. If accuracy in atmospheric correction, end-member determination, and Kd calculation is enhanced in the future, it will likely be possible to determine water depths more economically and efficiently.

Man-made Feature Extraction from the Hyperion Sensor Data (Hyperion 센서 데이터를 이용한 지형지물 추출)

  • 서병준;강명호;이용웅;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.182-186
    • /
    • 2003
  • 일반적으로 영상은 공간, 분광 및 시간 해상력을 바탕으로 고해상과 저해상 영상으로 구분된다. 최근 IKONOS 와 QuickBird 등 공간해상력이 1m 이하인 위성 영상들이 국내에 공급되어 바야흐로 고해상 위성영상을 이용한 다양한 활용분야들이 연구되고 있다. 이에 반하여 고분광해상력을 갖는 하이퍼스펙트럴 영상에 대한 연구는 미흡한 실정이다. 국제적으로는 항공기탑재 센서들을 이용한 다양하고 광범위한 조사분석 연구가 이루어지고 있으나, 국내에서는 장비와 관심의 부재로 인하여 초기적인 연구 단계에 있는 실정이다 하이퍼스펙트럴 센서는 환경, 지질, 목표물 인식 분야에 있어 많은 관심을 받고 있으며 위성탑재 초다중분광센서가 운용되기 시작하면서 연구의 활성화가 더욱 기대되고 있다. 본 연구에서는 EO-1 위성의 Hyperion 센서 데이터를 이용하여 노이즈 제거를 위한 영상 전처리 과정을 실시하고 분광특성에 따른 무감독 분류를 통한 인덱싱 기법과 널리 알려진 분광 라이브러리를 활용한 대상물, 특히 인공지물 추출 기법을 실험하였다. 이를 위하여 MNF(Maximum/Minimum Noise Filtering) 변환 및 분광 매칭(Spectral Matching) 기법, 분광 라이브러리 처리 등을 수행하였다. 결과의 비교를 위하여 동일 지역의 Landsat ETM+ 데이터를 이용하여 상호비교를 통한 검증작업으로서 그 성과를 판단하였다.

  • PDF

Radiometric Cross Validation of KOMPSAT-3 AEISS (다목적실용위성 3호 AEISS센서의 방사 특성 교차 검증)

  • Shin, Dong-yoon;Choi, Chul-uong;Lee, Sun-gu;Ahn, Ho-yong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.529-538
    • /
    • 2016
  • This study, multispectral and hyperspectral sensors were utilized to use radiometric cross validation for the purpose of radiometric quality evaluation of a 'KOMPSAT-3'. Images of EO-1 Hyperion and Landsat-8 OLI sensors taken in PICS site were used. 2 sections that have 2 different types of ground coverage respectively were selected as the site of cross validation based on aerial hyperspectral sensor and TOA Reflectance. As a result of comparison between the TOA reflectance figures of KOMPSAT-3, EO-1 Hyperion and CASI-1500, the difference was roughly 4%. It is considered that it satisfies the radiological quality standard when the difference of figure of reflectance in a comparison to the other satellites is found within 5%. The difference in Blue, Green, Red band was approximately 3% as a comparison result of TOA reflectance. However the figure was relatively low in NIR band in a comparison to Landsat-8. It is thought that the relatively low reflectance is because there is a difference of band passes in NIR band of 2 sensors and in a case of KOMPSAT-3 sensor, a section of 940nm, which shows the strong absorption through water vapor, is included in band pass resulting in comparatively low reflectance. To overcome these conditions, more detailed analysis with the application of rescale method as Spectral Bandwidth Adjustment Factor (SBAF) is required.

DEVELOPMENT OF ATMOSPHERIC CORRECTION ALGORITHM FOR HYPERSPECTRAL DATA USING MODTRAN MODEL

  • Kim, Sun-Hwa;Kang, Sung-Jin;Ji, Jun-Hwa;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.619-622
    • /
    • 2006
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral data. In this study, we attempted to generate the water vapor contents image from hyperspectral data itself and developed the atmospheric correction algorithm for EO-1 Hyperion data using pre-calculated atmospheric look-up-table (LUT) for fast processing. To apply the new atmospheric correction algorithm, Hyperion data acquired June 3, 2001 over Seoul area is used. Reflectance spectrums of various targets on atmospheric corrected Hyperion reflectance images showed the general spectral pattern although there must be further development to reduce the spectral noise.

  • PDF

Spectal Characteristics of Dry-Vegetation Cover Types Observed by Hyperspectral Data

  • Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 2006
  • Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.

ATMOSPHERIC AEROSOL DETECTION AND ITS REMOVEAL FOR SATELLITE DATA

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.598-601
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A high-resolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-1/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

  • PDF

Study on Automated Land Cover Update Using Hyperspectral Satellite Image(EO-1 Hyperion) (초분광 위성영상 Hyperion을 활용한 토지피복지도 자동갱신 연구)

  • Jang, Se-Jin;Chae, Ok-Sam;Lee, Ho-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.383-387
    • /
    • 2007
  • The improved accuracy of the Land Cover/Land Use Map constructed using Hyperspectal Satellite Image and the possibility of real time classification of Land Use using optimal Band Selective Factor enable the change detection from automatic classification using the existed Land Cover/Land Use Map and the newly acquired Hyperspectral Satellite Image. In this study, the effective analysis techniques for automatic generation of training regions, automatic classification and automatic change detection are proposed to minimize the expert's interpretation for automatic update of the Land Cover/Land Use Map. The proposed algorithms performed successfully the automatic Land Cover/Land Use Map construction, automatic change detection and automatic update on the image which contained the changed region. It would increase applicability in actual services. Also, it would be expected to present the effective methods of constructing national land monitoring system.

  • PDF

Analysis of Satellite Images to Estimate Forest Biomass (산림 바이오매스를 산정하기 위한 위성영상의 분석)

  • Lee, Hyun Jik;Ru, Ji Ho;Yu, Young Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.63-71
    • /
    • 2013
  • This study calculated vegetation indexes such as SR, NDVI, SAVI, and LAI to figure out correlations regarding vegetation by using high resolution KOMPSAT-2 images and LANDSAT images based on the forest biomass distribution map that utilized field survey data, satellite images and LiDAR data and then analyzed correlations between their values and forest biomass. The analysis results reveal that the vegetation indexes of high resolution KOMPSAT-2 images had higher correlations than those of LANDSAT images and that NDVI recorded high correlations among the vegetation indexes. In addition, the study analyzed the characteristics of hyperspectral images by using the COMIS of STSAT-3 and Hyperion images of a similar sensor, EO-1, and further the usability of biomass estimation in hyperspectral images by comparing vegetation index, which had relatively high correlations with biomass, with the vegetation indexes of LANDSAT with the same GSD conditions.