• Title/Summary/Keyword: EO/IR Camera

Search Result 26, Processing Time 0.022 seconds

Three-axis Spring Element Modeling of Ball Bearing Applied to EO/IR Camera and Structural Response Analysis of EO/IR Camera (EO/IR 카메라에 적용된 볼 베어링의 3축 스프링 요소 모델 및 EO/IR 카메라의 구조 응답해석)

  • Cho, Hee-Keun;Rhee, Ju-Hun;Lee, Jun-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1160-1165
    • /
    • 2011
  • This study is focused on the structural dynamic responses, i.e., vibration analysis results of the high-accuracy observation multi-axial camera, which is installed and operated for the UAV (Unmanned Aerial Vehicle) and helicopter etc. And, the authors newly suggest a modeling technology of the ball bearing applied to the camera by using three-axis spring elements. The vibration analysis results well agreed to the randum vibration test results. Also, the vibration responses characteristics of the multi-axial camera through the time history analysis of the random vibration were analyzed and evaluated. The above results can be applied to the FE-modeling of the ball bearings used for the space cameras.

A Study of Test Method for Position Reporting Accuracy of Airborne Camera (항공기 탑재용 카메라 위치출력오차 측정방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.646-652
    • /
    • 2013
  • PRA(Position Reporting Accuracy) for EO/IR(Electro-Optic/Infrared) airborne camera is an important factor in geo-pointing accuracy. Generally, rate table is used to measure PRA of gimbal actuated camera like EO/IR. However, it is not always possible to fix an EUT(Equipment for Under Test) to rate table due to capacity limit of the table on the size and weight of the object(EUT). Our EO/IR is too big and heavy to emplace on it. Therefore, we propose a new verification method of PRA for airborne camera and assess the validity of our proposition. In this method we use collimator, angle measuring instrument, 6 dof motion simulator, optical surface plate, leveling laser, inclinometer and poster(for alignment).

Automatic FOD Detection Test Using EO/ IR Laser Light Camera (EO / IR Laser Light 카메라를 이용한 FOD 자동탐지 시험)

  • Shin, Hyun-Sung;Hong, Gyo-Young;Hong, Jae-Beom;Choi, Young-Soo;Kim, Yun-Seob
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.638-642
    • /
    • 2017
  • FOD is a generic term for substances with potential threats that can pose a fatal risk to aircraft. Therefore, FOD should be noted in all areas of the airport. Especially, the method of detecting and collecting FOD in runway and aircraft movements is very low efficiency and economical efficiency of airport operation, so it is essential to develop FOD automatic detection system suitable for domestic environment. As part of the aviation safety technology development project, the development of an automatic detection system for foreign matter in the moving area of the aircraft inside the airport is underway. In this paper, it is confirmed that EO / IR camera is used for detection of foreign objects at Taean Airfield of Hanseo University. EO camera is used during the day and IR camera is used at night.

A Study of Alignment Tolerance's Definition and Test Method for Airborne Camera (항공기 탑재용 카메라 정렬오차 정의 및 시험방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun;Lee, Hang-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.154-159
    • /
    • 2013
  • Alignment tolerance for EO/IR airborne camera using common optic is an important factor in stabilization accuracy and geo-pointing accuracy. Before airborne camera is mounted on the aircraft, defining alignment tolerance and verification of it is essential in production as well as research and development. In this paper we establish basic concept on the definition and elements of alignment tolerance for airborne camera and propose how to measure each of those elements. Components and the measurement sequence of alignment tolerance are as follows: 1) tolerance of alignment between EO and IR LOS. 2) tolerance of sensor alignment. 3) tolerance of position reporting accuracy. 4) tolerance of mount alignment

Multi-task Architecture for Singe Image Dynamic Blur Restoration and Motion Estimation (단일 영상 비균일 블러 제거를 위한 다중 학습 구조)

  • Jung, Hyungjoo;Jang, Hyunsung;Ha, Namkoo;Yeon, Yoonmo;Kwon, Ku yong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1149-1159
    • /
    • 2019
  • We present a novel deep learning architecture for obtaining a latent image from a single blurry image, which contains dynamic motion blurs through object/camera movements. The proposed architecture consists of two sub-modules: blur image restoration and optical flow estimation. The tasks are highly related in that object/camera movements make cause blurry artifacts, whereas they are estimated through optical flow. The ablation study demonstrates that training multi-task architecture simultaneously improves both tasks compared to handling them separately. Objective and subjective evaluations show that our method outperforms the state-of-the-arts deep learning based techniques.

Imaging Performance Analysis of an EO/IR Dual Band Airborne Camera

  • Lee, Jun-Ho;Jung, Yong-Suk;Ryoo, Seung-Yeol;Kim, Young-Ju;Park, Byong-Ug;Kim, Hyun-Jung;Youn, Sung-Kie;Park, Kwang-Woo;Lee, Haeng-Bok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.174-181
    • /
    • 2011
  • An airborne sensor is developed for remote sensing on an aerial vehicle (UV). The sensor is an optical payload for an eletro-optical/infrared (EO/IR) dual band camera that combines visible and IR imaging capabilities in a compact and lightweight package. It adopts a Ritchey-Chr$\'{e}$tien telescope for the common front end optics with several relay optics that divide and deliver EO and IR bands to a charge-coupled-device (CCD) and an IR detector, respectively. The EO/IR camera for dual bands is mounted on a two-axis gimbal that provides stabilized imaging and precision pointing in both the along and cross-track directions. We first investigate the mechanical deformations, displacements and stress of the EO/IR camera through finite element analysis (FEA) for five cases: three gravitational effects and two thermal conditions. For investigating gravitational effects, one gravitational acceleration (1 g) is given along each of the +x, +y and +z directions. The two thermal conditions are the overall temperature change to $30^{\circ}C$ from $20^{\circ}C$ and the temperature gradient across the primary mirror pupil from $-5^{\circ}C$ to $+5^{\circ}C$. Optical performance, represented by the modulation transfer function (MTF), is then predicted by integrating the FEA results into optics design/analysis software. This analysis shows the IR channel can sustain imaging performance as good as designed, i.e., MTF 38% at 13 line-pairs-per-mm (lpm), with refocus capability. Similarly, the EO channel can keep the designed performance (MTF 73% at 27.3 lpm) except in the case of the overall temperature change, in which the EO channel experiences slight performance degradation (MTF 16% drop) for $20^{\circ}C$ overall temperate change.

Survey of Electro-Optical Infrared Sensor for UAV

  • Jang, Seung-Won;Kim, Joong-Wook
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.124-134
    • /
    • 2008
  • The rising demand for the high efficiency and high covertness in UAV motivates the miniature design of the high performing mission sensors, or payloads. One of the promising payload sensors, EO/IR sensor has evolved satisfying its demands and became the main stand-alone mission sensor for 200kg-range UAV. One aspect in development of EO/IR sensor concerns lack of specification criterions to represent its performance. Even though the high demand and competition among each manufacturer caused EO/IR features subject to rapid change collateral to new technology, the datasheets maintained the conventional outdated formats which leave some of the major components in ambiguity. Making comparisons or predicting actual performance with such datasheets is hardly worthwhile; yet, they could be important reference guide for the potential customers what to expect for the upcoming EO/IR. According to UAS Roadmap 2007-2032 published by DoD, one of the main potential customers as well as a main investor of EO/IR technology, EO/IR is expected to play key roll in solving urgent problems, such as see and avoid system. This paper will examine the recent representative EO/IR specialized in UAS missions through datasheets to find out current trend and eventually extrapolate the possible future trend.

  • PDF

Design and Implementation of Control Program for EO/IR Camera mounted on Multi-Purpose Unmanned Helicopter

  • Ahn, MyeongGi;Seong, KilYoung;Lee, JongHun;Kim, JaeKyung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.72-77
    • /
    • 2021
  • This paper proposes a design and development plan for a control program for the MX-10 EO/IR camera. This camera is a piece of mission equipment mounted on the multi-purpose unmanned helicopter (MPUH) system. Operators must be able to control the necessary functions of the camera to perform their assigned tasks. To achieve this, the function to control the camera was analyzed, and a control program was developed. In addition, the control program was linked to a joystick for convenient operation of the camera by the operator.

Implementation of EO/IR Camera for Fire-fighting of Narrow Space (협소거주공간 진화를 위한 EO/IR카메라 구현)

  • Park, Hyun-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.628-629
    • /
    • 2018
  • Recently, residential spaces in urban areas have changed into multi - family residential spaces. There is a feature that smoke is charged when a fire occurs here. Also, the evacuation route and the direction of the outflow of smoke are the same, and the possibility of inhaling the smoke of the evacuees is very high. When fighting fire in a narrow residential space such as a dwelling in a downtown area, exploration is the most important. For this purpose, we implement EO / IR sensor which can be mounted on firefighter 's helmet and can be used for fire detection. By using the EO / IR operation test, we can derive the results that can be used for research and development of the fire search sensor.

  • PDF