• 제목/요약/키워드: ENSLAVING EFFECTS

검색결과 2건 처리시간 0.016초

손가락 누르기 속력에 따른 Enslaving 효과 (Enslaving Effects on Finger Pressing Speed)

  • 우병훈
    • 한국운동역학회지
    • /
    • 제17권3호
    • /
    • pp.217-224
    • /
    • 2007
  • This study was to investigate the effects of enslaving on finger-tip force of other fingers on finger pressing speed. We hypothesized that the effects depend on finger pressing speed, and the fingers proximity and are larger for fingers that are closer to each other. Six healthy, right-handed subjects(age: $27.1{\pm}4.3yr$, height: $175.4{\pm}7.2cm$, weight $71.3{\pm}5.8kg$) participated in the experiment. Each finger showed no significant on task finger speed. In the tasks with two neighboring fingers (e.g. middle and ring finger tasks), the index and middle fingers showed larger forces than the other neighboring fingers. During the index and little finger tasks, the enslaving force magnitude decreased with distance to the task finger (i.e. index finger enslaving force was the smallest during the little finger task).

손 끝 온도변화가 젊은 성인의 다중 손가락 동작에 미치는 효과 (Effect of Fingertip Temperature on Multi-finger Actions in Young Adults)

  • Shin, Narae;Xu, Dayuan;Song, Jun Kyung;Park, Jaebum
    • 한국운동역학회지
    • /
    • 제29권3호
    • /
    • pp.157-166
    • /
    • 2019
  • Objective: This study examined the effects of stimulating fingertip temperature on the patterns of force sharing and stability properties during multi-finger force production tasks. Method: 9 adult subjects (male: 3, female: 6, age: $26.11{\pm}4.01yrs$, height: $169.22{\pm}5.97cm$, weight: $61.44{\pm}11.27kg$) participated in this study. The experiment consisted of three blocks: 1) maximal voluntary contraction (MVC) task, 2) single-finger ramp task to quantify enslaving (i.e., unintended force production by non-task fingers), and 3) 12 trials of multi-finger steady-state force production task at 20% MVC. There were three temperature conditions including body-temperature (i.e., control condition), $40^{\circ}C$, and $43^{\circ}C$, and the stimulation was given to the index finger only for all experimental conditions. Results: There were no significant differences in the MVC forces, enslaving, and the accuracy of performance during the steady-state task between the conditions. However, the share of stimulated index finger force increased with the index fingertip temperature, while the share of middle finger force decreased. Also, the coefficient of variation of both index and middle finger forces over repetitive trials increased with the index fingertip temperature. Under the framework of the uncontrolled manifold (UCM) hypothesis used to quantify indices of multi-finger synergies (i.e., stability property) stabilizing total force during the steady-state task, the two variance components within the UCM analysis increased together with the fingertip temperature, while no changes in the synergy indices between the conditions. Conclusion: The current results showed that fingertip temperature stimulation only to index finger does not affect to muscle force production capability of multi-finger, independence of individual fingers, and force production accuracy by the involvement of all four fingers. The effect of fingertip temperature on the sharing pattern and force variation may be due to diffuse reflex effects of the induced afferent activity on alpha-motoneuronal pools. However, the unchanged stability properties may be the reflection of the active error compensation strategies by non-stimulated finger actions.