• Title/Summary/Keyword: EMTDC/PSCAD modeling

Search Result 137, Processing Time 0.041 seconds

Modeling for Utility Interactive Photovoltaic Power Generation System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 태양광 발전시스템의 배전계통 연계운전을 위한 모델링)

  • Kim, Woo-Hyun;Kang, Min-Kyu;Kim, Eung-Sang;Kim, Ji-Won;Ro, Byong-Kwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1180-1182
    • /
    • 1999
  • Modeling for utility interactive photovoltaic power generation system has been studied using PSCAD/EMTDC. The proposed model system consists of a simple utility circuit configuration, 3kW of single phase utility interactive photovoltaic system, single phase PWM voltage source inverter module, and feed forward PID controller as control circuit. In the system, the DC current is assumed constant, and the voltage source inverter provides sinusoidal ac current for the loads of utility system. The simulation results are given in order to verify the effectiveness of the proposed model. The phases of output voltage of utility system and the output current of the inverter module are compared. Especially, the compensation effect of the photovoltaic system for the unbalanced load is analyzed. and the transient phenomena for a phase to ground fault are also simulated.

  • PDF

Fixed speed wind power generation system modeling and transient state stabilization method using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고정속 풍력발전시스템 모델링 및 과도상태 안정화기법)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1178-1179
    • /
    • 2008
  • This paper describes a modeling of fixed speed wind power generation system which comprise of wind turbine, generator and grid. The wind turbine is based on MOD-2, which is IEEE standard wind turbine, and includes a component using wind turbine characteristic equation. Fixed speed induction generator is directly connected to grid, so the variation of wind speed has effects on the electrical torque and electrical output power. Therefore the power control mode pitch control system is necessary for aerodynamic control of the blades. But the power control mode does not operate at the fault condition. So it is required some methods to control the rotor speed at transient state for stabilization of wind power system. In this paper, simulation model of a fixed speed wind power generation system based on the PSCAD/EMTDC is presented and implemented under the real weather conditions. Also, a new pitch control system is proposed to stabilize the wind power system at the fault condition. The validity of the stabilization method is demonstrated with the results produced through sets of simulation.

  • PDF

Modeling for Power Supply Substation in Maglev Train System (자기부상열차 급전변전소의 모델링)

  • Lee, Yun-Seong;Kim, Jin-O;Kim, Hyung-Chul;Kim, Ju-Rak;Lee, Jun-Kyung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.278-282
    • /
    • 2010
  • Since a power supply substation of the magnetic levitation train system includes a inverter which is necessary to change the frequency of power, it has a different characteristic comparing to any other railway system. Nowaday a study for determining rating of facilities constituting a power supply system and modeling that system is undergoing. In this paper, a analysis model for the power supply system of the magnetic levitation train using the 3-level inverter is proposed. And the analysis for output characteristic is performed using the PSCAD/EMTDC program. The control method about the output of 3-level inverter for supplying power to loads in magnetic levitation train system is also described.

Characteristic Analysis and Implementation of 30kW Portable Test Equipment for Performance Evaluation in Energy Storage System (30kW급 ESS용 이동형 성능평가 시험장치의 구현 및 특성분석)

  • Park, Jea-Bum;Kim, Mi-Sung;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.715-723
    • /
    • 2018
  • The energy storage system consists of batteries, power conditioning system and energy management system. If ESS is installed and operated in the field, SAT(Site Acceptance Test) of ESS is being essentially required for the safety and performance of ESS. Furthermore, in order to more accurately and reliably validate the performance of the ESS in advanced countries, it has been required to perform not only performance testing by H/W equipments but also performance verification by S/W tool. Therefore, this paper proposes the modeling of portable test equipment in order to evaluate the performance and reliability of ESS by using the PSCAD/EMTDC S/W. And also, the prototype of 30[kW] scaled portable test equipments is implemented based on the S/W modeling. From the results of various simulations and testings such as power quality, LVRT and anti-islanding tests, it is confirmed that 30[kW] scaled portable test equipment is useful for SAT of ESS, because the simulation results of PSCAD/EMTDC are identical to them of 30[kW] test equipment at the same test conditions.

A Study on an Evaluation Modeling of Power System Performance for Frequency Regulation ESS Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 주파수조정용 ESS의 계통영향성 평가 모델링에 관한 연구)

  • Choi, Sung-Sik;Kang, Min-Kwan;Lee, Hu-Dong;Nam, Yang-Hyun;Park, Ji-Hyun;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1024-1030
    • /
    • 2018
  • Recently, the large scaled energy storage system(ESS) which has various functions such as peak saving, demand management, output stabilization of renewable energy and frequency regulation(FR) is being energetically installed and operated. Especially, as the use case of frequency regulation ESS, the KEPCO has demonstrated the total of 376[MW] ESS since 2014. However, there are no operational experiences and international technical standards on frequency regulation application in ESS. Therefore, this paper propose the evaluation algorithm for power system performance of ESS by considering the frequency characteristics between governor of existing generator and frequency regulation ESS, in order to verify the power system performance of ESS. And also, this paper propose an evaluation modeling for small scaled power system including the existing generator, frequency control ESS and customer loads based on the PSCAD/EMTDC S/W. From the simulation results in 360[MW] model power system, it is confirmed that frequency regulation ESS has better performances than conventional generators.

Modeling and Simulation of Loss of Excitation of Hydro Generator Control System (수력 발전기 제어시스템의 계자상실 모델링과 시뮬레이션)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.74-80
    • /
    • 2014
  • Generator protection device has to detects an internal fault conditions in generator and abnormal operating conditions must be due to the hazards. Loss of excitation may cause generator itself failure as well as serious operating problem in power system, and then requires an appropriate response of generator protection device. Details modeling of generator control system and analysis of transient states in generator are important for optimal operation in power plants. In addition, the fault simulation data are also used for testing the characteristics of IED. In this paper, the hydro generator control system using PSCAD/EMTDC, visual simulation for power systems, was modeled. The generator control system which is composed of generator, turbine, exciter, governor was implemented. The parameters of generator control system model were obtained from field power plant. Loss of excitation simulations were performed while varying the fixed load. Several signals analysis were also performed so as to analyze transients phenomena.

A Study on the Modeling of Step Voltage Regulator and Energy Storage System in Distribution System Using the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 배전계통의 선로전압조정장치와 전지전력저장장치의 모델링에 관한 연구)

  • Kim, Byungki;Kim, Giyoung;Lee, Jukwang;Choi, Sungsik;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1355-1363
    • /
    • 2015
  • In order to maintain customer voltage within allowable limit($220{\pm}13V$), tap operation of SVR(step voltage regulator) installed in primary feeder could be carried out according to the scheduled delay time(30 sec) of SVR. However, the compensation of BESS(battery energy storage system) is being required because the customer voltages during the delay time of SVR have a difficultly to maintain within allowable limit when PV system is interconnected with primary feeder. Therefore, this paper presents modeling of SVR to regulate voltage with the LDC(line drop compensation) method and modeling of BESS to control active and reactive power bi-directionally. And also, this paper proposes the coordination control modeling between BESS and SVR in order to overcome voltage problems in distribution system. From the simulation results based on the modeling with the PSCAD/EMTDC, it is confirmed that proposed modeling is practical tool for voltage regulation analysis in distribution system.

Improvement of line Current using Instantaneous Real Power Compensation of DSTATCOM (DSTATCOM의 순시 유효전력 보상을 이용한 선로의 전류 개선)

  • Jeong, Su-Yeong;Kim, Tae-Hyeon;Mun, Seung-Il;Gwon, Uk-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.327-332
    • /
    • 2002
  • In this paper, conventional reactive power compensation is defined and instantaneous real control concept for shunt converters is proposed. This equipment incorporates the compensation function of harmonics at the distribution line by nonlinear load. These methodologies are applied to IEEE 13 distribution system with the modeling of nonlinear load using EMTEDC/PSCAD package. Simulation with EMTDC results presented to confirm that the new approach has better performance than those obtained by controllers based on traditional concepts of reactive power compensation.

Simulation Study on Capturing Maximum Wind Power Control Method of DFIG based on PSCAD/EMTDC (PSCAD를 이용한 DFIG풍력발전 최대출력 풍력발전 제어방법에 관한 연구)

  • Sun, Qitao;Choi, Joon-Ho;Park, Sung-Jun;Nam, Soon-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1122_1123
    • /
    • 2009
  • Doubly Fed Induction Generator (DFIG) used in variable speed constant frequency wind energy generation system can capture wind energy with the highest efficiency by using the stator flux oriented vector control method. This paper sets up a DFIG modeling of wind generation system in PSCAD/EMTDC to simulate the operational performance with wind speed variation. In order to achieve the characteristics of the maximum utilization of wind power, this paper uses the vector control technology to track largest wind power and the independent control of generator active and reactive power.

  • PDF

A Study on the Control Method of Customer Voltage Variation in Distribution System with PV Systems

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Yong-peel;Kim, Eung-sang;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.838-846
    • /
    • 2015
  • This paper deals with the modified modeling of PV system based on the PSCAD/EMTDC and optimal control method of customer voltages in real distribution system interconnected with the photovoltaic (PV) systems. In order to analyze voltage variation characteristics, the specific modeling of PV system which contains the theory of d-q transformation, current-control algorithm and sinusoidal PWM method is being required. However, the conventional modeling of PV system can only perform the modeling of small-scale active power of less than 60 [kW]. Therefore, this paper presents a modified modeling that can perform the large-scale active power of more than 1 [MW]. And also, this paper proposes the optimal operation method of step voltage regulator (SVR) in order to solve the voltage variation problem when the PV systems are interconnected with the distribution feeders. From the simulation results, it is confirmed that this paper is effective tool for voltage analysis in distribution system with PV systems.