• 제목/요약/키워드: EMTDC/PSCAD

검색결과 690건 처리시간 0.027초

소형 열병합발전 시스템이 연계된 배전계통에 초전도 전류제한기 적용시 리클로져-퓨즈 협조 분석 (Analysis on Recloser-Fuse Coordination in a Power Distribution System linked Small Scale Cogeneration System with Superconducting Fault Current Limiter)

  • 김명후;김진석;문종필;임성훈;김재철;이준규
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.499-505
    • /
    • 2010
  • This paper analyzed that the coordination of recloser-fuse when a superconducting fault current limiter (SFCL) is installed to a power distribution system linked small scale cogeneration system. As a rule, the recloser to properly protect against both permanent and temporary fault is installed to upstream of fuse. Therefore, in a power distribution system linked small scale cogeneration system, the fault current is increased by adding fault current of small scale Cogeneration system when a permanent fault occurs, and the fuse could melt during the first fast operation of the recloser because of more sufficient heat from the increased current. However, when SFCLs are applied into a power distribution system linked small scale cogeneration system, the coordination of recloser-fuse could be accomplished due to decreased fault current as the effect of the impedance value of the SFCL. Therefore, to solve these problems, we analysed the operation of recloser-fuse coordination in a power distribution system linked small scale cogeneration system with SFCL using PSCAD/EMTDC.

그리드/연계선 사고 시 풍력발전단지의 응동 분석 (Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions)

  • 이혜원;김연희;정태영;이상철;강용철
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

Investigation and Mitigation of Overvoltage Due to Ferroresonance in the Distribution Network

  • Sakarung, Preecha;Bunyagul, Teratam;Chatratana, Somchai
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.300-305
    • /
    • 2007
  • This paper reports an investigation of overvoltages caused by ferroresonance in the distribution system, which consists of a bank of open-delta single-phase voltage transformers. The high voltage sides of the voltage transformer are connected to the distribution system via three single-phase fuse cutouts. Due to the saturation characteristic of the transformer cores, ferroresonance can occur in the condition that the transformer is energized or deenergized with single-phase switching operation of the fuse cutouts. The simulation tool based on EMTP is used to investigate the overvoltages at the high side of voltage transformer. Bifurcation diagrams are used to present the ferroresonance behavior in ranges of different operating conditions. The simulation results are in good agreement with the results from the experiment of 22 kV voltage transformers. The mitigation technique with additional damping resistors in the secondary windings of the voltage transformers will be introduced. Brief discussion will be made on the physical phenomena related to the overvoltage and the damage of voltage transformer.

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

Grid-tied Power Conditioning System for Fuel Cell Composed of Three-phase Current-fed DC-DC Converter and PWM Inverter

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.255-262
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for fuel cell, which consists of three-phase current-fed DC-DC converter and three-phase PWM inverter. The three-phase current-fed DC-DC converter boosts fuel cell voltage of 26-48 V up to 400 V with zero-voltage switching (ZVS) scheme, while the three-phase PWM(Pulse Width Modulation) inverter controls the active and reactive power supplied to the grid. The operation of the proposed power conditioning system with fuel cell model is verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation is verified through experimental works with a laboratory prototype with 1.2 kW proton exchange membrane (PEM) fuel cell stack. The proposed power conditioning system can be commercialized to interconnect the fuel cell with the power grid.

분산전원의 구성 및 출력 제어 방법에 따른 Droop 계수 설정 방법 (A Method to Determine the Droop Constant of DGs Considering the Configuration and Active Power Control Mode)

  • 안선주;박진우;정일엽;문승일
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1954-1961
    • /
    • 2008
  • Microgrid usually consists of a cluster of distributed generators(DGs), energy storage systems and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents detailed descriptions of two different options for controlling the active power of DGs in the microgrid. One is regulating the power injected by the unit to a desired amount(Unit output power control) and the other is to regulate the flow of active power in the feeder where the unit is installed to a constant(Feeder flow control). Frequency-droop characteristics are used to achieve good active power sharing when the microgrid operates in the islanded mode. The change in the frequency and the active power output of DGs are investigated according to the control mode and the configuration of DGs when the microgrid is disconnected from the main grid. From the analysis, this paper proposes a method to determine the droop constant of DGs operating in the feeder flow control mode. Simulation results using the PSCAD/EMTDC are presented to validate the approach, which shows good performance as opposed to the conventional one.

송전급 초전도한류기의 적용에 따른 선로보호용 비율전류차동계전기의 동작특성 및 보호협조 분석 (Analysis on the Operation Characteristics and Protection Coordination between the Current Ratio Differential Relay for Line Protection and the Trigger-type SFCL in the Power Transmission System)

  • 조용선;김진석;임성훈;김재철
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.925-930
    • /
    • 2013
  • The fault current of the power transmission system is greater than that of the power distribution system. Therefore, the introduction of superconducting fault current limiter (SFCL) is more needed to reduce the increased fault current. The trigger-type SFCL consists of the high-temperature superconducting element (HTSC), the current limiting reactor (CLR) and the circuit breaker (CB). The trigger-type SFCL can be used to supplement the disadvantages of the resistive-type SFCL. The operation characteristics of the current ratio differential relay which is usually applied to the protection device of the power transmission system are expected to be affected under fault conditions and the applicability of the trigger-type SFCL. In this paper, we analyzed the operating characteristics, by the fault conditions, between the current ratio differential relay for line protection and the trigger-type SFCL in the power transmission system through the PSCAD/EMTDC simulation.

A Strategy for Balanced Power Regulation of Energy Storage Systems in a Distribution System during Closed-Loop Operation

  • Han, Yoon-Tak;Oh, Joon-Seok;Cha, Jae-Hun;An, Jae-Yun;Hyun, Seung-Yoon;Lee, Jong-Kwan;Seo, In-Yong;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2208-2218
    • /
    • 2017
  • To resolve overload in a distribution system, a distribution system operator (DSO) often performs a load transfer using normally open tie points and switches in the distribution line. During this process, the distribution system is momentarily operated in closed-loop operation. A closed-loop current in the distribution system can cause a power failure due to excess breaking current in the circuit breakers and reclosers. Therefore, it is necessary to calculate the closed-loop current exactly. However, if there are a large number of distributed generation (DG) systems in the distribution system, such as energy storage systems (ESS), they might obstruct the closed-loop operation based on bidirectional power flow. For quick and precise operation of a closed-loop system, the ESS has to regulate the power generation while satisfying closed-loop operation in the worst cases. We propose a strategy for balanced power regulation of an ESS. Simulations were carried out using PSCAD/EMTDC, and the results were compared with calculation results.

Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines

  • Yuan, Chang;Liu, Chang;Yang, Dan;Zhou, Ruibing;Tang, Niang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1111-1126
    • /
    • 2018
  • In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.

루프화 배전계통에 초전도 한류기 적용에 따른 Recloser-Fuse 보호협조 분석 (Analysis on Recloser-Fuse Coordination in Loop Power Distribution System with Superconducting Fault Current Limiters)

  • 최규완;김수환;문종필
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.111-115
    • /
    • 2015
  • Recently, protection coordination issues can occur due to increased fault current in power system when power system being changed radial power system to grid system such as loop power system, micro grid and smart grid. This paper analyzed Recloser-Fuse coordination in loop power distribution system with Superconducting Fault Current Limiters(SFCLs) when single line ground fault occur in loop power distribution system with SFCLs. We analyzed Recloser-Fuse Coordination in radial power distribution system and changed coordination caused by increased Fault current because of loop system when single line ground fault occur in power distribution system. This paper simulated to improve changed coordination using SFCLs in loop power distribution system. Power distribution system, SFCLs and protective devices are modeled using PSCAD/EMTDC.