• Title/Summary/Keyword: EMI Test

Search Result 144, Processing Time 0.021 seconds

Experimental Verification and Circuit Modeling for Electromagnetic Interference(EMI) Estimation in PDP System (pdp 시스템의 EMI 예측을 위한 회로모델링 및 실험적 검정)

  • Gang, Jong-Gu;Eo, Yun-Seon;Sim, Jong-In;Jeong, Ju-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.39-45
    • /
    • 2002
  • A new EMI estimation technique concerned with a PDP system is presented. A physical circuit model is developed which can fairly well describe the AC-PDP system. EMIs of the PDP system are quantitatively determined by combining circuit model and Hertzian dipole antenna model. The simulation results are experimentally verified with the test panel. The AC PDP system was measured in the frequency range of 30MHz~300MHz in a semi-anechoic chamber, according to CISPR 13 code. Thereby, it is shown that the proposed technique can be usefully employed for EMI reduction.

Theoretical Curve of Classical Site Attenuation for Forced Resonant Type EMI Dipole Antennas (강제 공진형 EMI 다이폴 안테나에 대한 시험장 감쇠량 이론 곡선)

  • Ju Chang-Hyun;Park Eun-Jung;Kim Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.571-579
    • /
    • 2005
  • This paper presents the classical site attenuation characteristics of a forced resonant electromagnetic interference (EMI) dipole antenna for frequencies below 80 MHz. The coupled integral equations for unknown current distribution are solved by the Galerkin's method of moments with piecewise sinusoidal functions. The results show that the forced resonant type EMI dipole antenna for frequencies below 80 MHz can be used effectively for measuring the classical site attenuation of horizontal polarization. The theoretical site attenuation curves presented can be used as reference curves for evaluating the performance of an open area test site.

A Study on the Development, Performance and Reliability Certification for Fire Detection System in Outdoor Area (옥외형 화재경보시스템의 개발과 성능시험에 관한 연구)

  • Baek, Dong-Hyun;Ghil, Min-Sik
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.15-18
    • /
    • 2013
  • This paper is concerned with the Performance and Reliability Certification for fire detection system in outdoor area such small and middle sized cultural assets, natural monument and outdoor facilities. Especially, if a fire were to occur in vulnerable area, it is difficulty to detect a fire. therefore we propose a high efficiency and low cost unmanned fire detection system in capable of an early detection regardless spontaneously fire or firebug. for Adoption of Intelligent Fire Detection System with movable and unmanned function breaking from the existing Conventional Fire Detection System, this Range of R&D includes the Performance test, Function test, Field test, Flame Detection test and EMI/EMS Compliance test. the Result data of Performance test, Function test and Field test is generally good during 3 months. also we checked that thermal variation test and EMI/EMS compliance test are good result data within allowable range. As a result of general test, we verified improvement results that the measure distance of fire detection extend 75 m, the Power of waiting time increase 4 hours, the Power of operation time increase 3 days and the context awareness with video as well as sensors.

Investigation of Setting Process of Cementitious Materials Using Electromechanical Impedance of Embedded Piezoelectric Patch

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.607-614
    • /
    • 2012
  • In this study, the evolution of the electro-mechanical impedance (EMI) of a piezoelectric (PZT) patch embedded in fresh cement paste was investigated to discuss the possibility of monitoring the setting process of cement-based materials using an EMI sensing technique. A tailored thin square PZT patch was embedded in cement paste before casting, and EMI signatures of the embedded patch were continuously measured from casting up to 12 hours. A standard penetration resistance test was performed to compare and correlate the evolution of EMI during the setting process. The results showed that EMI responses differ according to the age of the cement paste, and that the behavior of the EMI resonance peak has a clear correlation with the penetration resistance of the cement paste. Based on the results, it is concluded that an EMI sensing technique using embedded PZT patch can be effectively applied to monitor the setting process of cement-based materials.

안테나 및 EMC/EMI 측정을 위한 다용도 전자파무반사실 구현

  • Kwon, Beom;Kim, Ju-Wan
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.77-83
    • /
    • 1999
  • Due to the high cost of constructing anechoic chamber, the multi-usage of a chamber in various applications is very effective in terms of cost as well as space. In this paper, we describe an anechoic chamber currently used at SK Telecom in Korea. This is designed for the measurements of both far/near field antenna and EMC/EMI in the identical chamber. This anechoic chamber and measurement system support antenna test in the frequency range of 150 MHz to 40 GHz and meet the requirement of ANSI C63.4 and CISPR 16.1 for EMC/EMI.

  • PDF

Direct Instruction and Use of Online English Writing Software on EMI Class-Takers' Self-Efficacy

  • Murdoch, Yvette Denise;Kang, Alin
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.97-106
    • /
    • 2019
  • EMI (English as a Medium of Instruction) classes are now accepted policy at Korean universities, yet students often struggle with required academic English writings. The present study examined an EMI class that used direct instruction and access to online assistive English writing software. From preliminary analysis, 26 students expressed interest in how an EMI academic writing class could facilitate improved English writing skills. Study participants completed a survey on self-efficacy and learning needs and assignments for an EMI academic writing class. To establish inter-rater reliability, three trained raters assessed the written essays of students prior to and after instructional intervention. Fleiss' Kappas statistics showed moderate reliability. Students' opinions on the use of online software were also analysed. Paired t-test was run on the quality of students' pre- and post-instruction assignments, and there was significant difference in the rated scores. Self-efficacy was found to have moderate positive association with improved post-essay writing scores.

Electromagnetic Interference Test Result Analysis of Integral Reactor Digital I&C System (일체형 원자로 디지털 계측제어계통 전자파 장애 시험결과 분석)

  • Lee, Joon-Koo;Sohn, Kwang-Young;Park, Hee-Seok;Park, Heui-Yun;Koo, In-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.213-218
    • /
    • 2003
  • Because of the development of digital technology, modern digital instrumentation & control systems are being innovativly developed in industrial plants. Whereas, many analog systems are still being used in nuclear plants, because of the demerits of digital equipment. As known, the demerits of digital equipment are the uncertainty and weaknesses in ambient environments such as smoke & electromagnetic interference In an Integral Reactor, a digital I&C system will be composed of microprocessor, memory and network card. Designers will apply new technique for digital equipment. Thus, it is important for digital I&C systems to operate according to designed functions & performance in the ambient environments during a life cycle. Digital I&C systems should have tolerance in such environments and environment qualification should be concluded To acquire electromagnetic interference qualification of digital equipment, this paper suggests an EMI test requirement. Designers should consider the electromagnetic compatibility and test digital equipment according to each test procedure. This paper involves an EMI test requirement and the results analysis of EUT(Equipment Under Test). Test result analysis will be used as electromagnetic compatibility design guides for Integral Reactor I&C systems.

  • PDF

Measurement of Setting Times of Steel Fiber Reinforced Mortar using Electric-mechanical Impedance Sensing Technique (전기역학적 임피던스 기법을 이용한 강섬유 보강 모르타르의 응결시간 평가)

  • Lee, Jun Choel;Kim, Wha Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.183-184
    • /
    • 2016
  • This study investigated the evolution of electro-mechanical impedance (EMI) of piezoelectricity (PZT) sensor embedded in hydrating steel fiber reinforced mortar to determine the setting times of that. Penetration resistance test was also conducted in order to justify the valid of EMI sensing technique. As a result, the setting times of steel fiber reinforced mortar can be effectively monitored through the EMI sensing technique using PZT sensor.

  • PDF

A Study on Electromagnetic Interference of Electric Vehicles with Variations of Charging Device Inlet Location (전기자동차 충전구 위치에 따른 전자파 방사특성에 관한 연구)

  • Gwon, Sunmin;Woo, Hyungu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.694-701
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, eco-friendly advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) are rapidly increasing. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are driven by electric energy and equipped with more electric systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference(EMI) test and an electromagnetic susceptibility(EMS) test. EMI test of the electric vehicles are needed not only in driving mode but also in charging mode because they must be recharged by much electric energy for driving. Depending on vehicle manufacturers, the charging device type and the location of charging device inlet in electric vehicles are various. In this paper, in order to investigate EMI of electric vehicles in charging mode in consideration of the direction of measuring antenna and the location of charging device inlet, a series of electromagnetic emission tests are conducted using three electric vehicles (neighborhood electric vehicle, electric vehicle and electric vehicle-bus). The test results show that electromagnetic emission measurements in charging mode are dependent on the direction of measuring antenna and the location of charging device inlet.

A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting

  • Jung, Hyung-Jo;Kim, In-Ho;Koo, Jeong-Hoi
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.379-392
    • /
    • 2011
  • This paper presents a multi-functional system, consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device, and its applications in stay cables. The proposed system is capable of offering multiple functions: (1) mitigating excessive vibrations of cables, (2) estimating cable tension, and (3) harvesting energy for wireless sensors used health monitoring of cable-stayed bridges. In the proposed system, the EMI device, consisting of permanent magnets and a solenoid coil, can converts vibration energy into electrical energy (i.e., induced emf); hence, it acts as an energy harvesting system. Moreover, the cable tension can be estimated by using the emf signals obtained from the EMI device. In addition, the MR damper, whose damping property is controlled by the harvested energy from the EMI device, can effectively reduce excessive cable vibrations. In this study, the multi-functionality of the proposed system is experimentally evaluated by conducting a shaking table test as well as a full-scale stay cable in a laboratory setting. In the shaking table experiment, the energy harvesting capability of the EMI device for wireless sensor nodes is investigated. The performance on the cable tension estimation and the vibration mitigation are evaluated using the full-scale cable test setup. The test results show that the proposed system can sufficiently generate and store the electricity for operating a wireless sensor node twice per day, significantly alleviate vibration of a stay cable (by providing about 20% larger damping compared to the passive optimal case), and estimate the cable tension accurately within a 2.5% error.