• Title/Summary/Keyword: EMI SE

Search Result 72, Processing Time 0.02 seconds

EMI Characteristics Analysis of LED Light Source (LED광원의 자기장 유도전류와 잡음 단자전압의 분석)

  • Hwang, Myung-Keun;Shin, Sang-Wuk;Cho, Mee-Ryoung;Lee, Se-Hyun;Jeon, Sang-Kyoo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.151-155
    • /
    • 2007
  • In this paper, we have analyzed EMI characteristics for the most widely used LED light source for general light purposes. The magnetic field induced current of LED light source and noise terminal voltage for each electric power line has been measured and analyzed. we conclude it is used as a reference when the standards related to LED light source are proposed.

  • PDF

The EMI characteristics research of electrodeless fluorescent lamp ballast (전원회로(무전극 철광등용 안정기)의 전자파장해 특성연구)

  • Lee, Se-Hyun;Kim, Hyun-Sook;Shin, Sang-Wuk;Hwang, Myung-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.211-214
    • /
    • 2002
  • In this paper, We have investigated the EMI (electro magnetic interference) characteristics of electrodeless fluorescent lamp ballast as a ground connection and have measured various waveforms, which can be expressed the disturbance voltages and radiated electromagnetic disturbances. induced the measuring instrument and found that effect of ground connection is the one of the important elements on EMI reduction.

  • PDF

Analysis for the Effect of EMI Shield Layers' Height on Circuit Function (EMI 차폐막의 높이가 회로의 기능에 미치는 영향 분석)

  • Kim, Hyeon-Woo;Woo, Jin-Ha;Jang, Se-Hyun;Chang, Tae-Soon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.57-63
    • /
    • 2019
  • S-parameters were used to analyze the effect of the circuit according to the height of the EMI shield layers. Among the S-parameters, S11, S21, S22, and S31 were used as factors for determining the effect on the circuit function. Simulations were performed using shields made of Graphite and Ferrite, and the frequencies were run from 100 MHz to 1 GHz. As the height of the shield was increased, the value of S21 was getting closer to 0 dB. In addition, the SE value was confirmed to improve the shielding performance according to the thickness of the insulating layer only in a specific frequency band. Based on 800um with thickest silicon dioxide thickness, the FG structure averaged -1 dB in narrow frequency bands between 100 MHz and 300 MHz, showing better efficiency than GF with an average of -2 dB. Although GF structures do not show high efficiency, they exhibit average performance of -3 dB in frequency bands between 100 MHz and 1 GHz rather than FG structures that sway over a wide range. In other words, FG and GF structures have trade-off structures. Therefore, it should be noted that the appropriate structure is selected for use.

Effect of Oxyfluorination on Electroless Ni Deposition of Carbon Nanotubes (CNTs) and Their EMI Shielding Properties (탄소나노튜브의 무전해 니켈도금 및 전자파 차폐 특성에 미치는 함산소불소화의 영향)

  • Choi, Ye Ji;Lee, Kyeong Min;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.212-218
    • /
    • 2019
  • To investigate the effect of the oxyfluorination of carbon nanotubes (OF-CNTs) on electroless Ni deposition and electromagnetic interference shielding efficiency (EMI SE), CNTs were treated with a mixture of oxygen and fluorine gases and sequentially deposited with nickel. These samples were then manufactured into thin films on a polyimide film to evaluate their EMI SE. The surface chemical property of OF-CNTs was investigated by X-ray photoelectron spectroscopy. From the results of thermogravimetric and scanning electron microscopic analyses, it was found that both the amount of deposited Ni and the surface morphology changed depending on oxyfluorination. Moreover, the Ni-deposited CNTs pretreated with $O_2:F_2=1:9vol%$ exhibited the maximum EMI SE as approximately 19.4 dB at 1 GHz. These results were attributed to the formation of oxygen and fluorine functional groups on the surface of CNTs due to the oxyfluorination, and the functional groups enabled to deposit a suitable amount of Ni and improve the dispersion in the deposited solution.

Effect of Multi-walled Carbon Nanotube Dispersion on the Electrical, Morphological and Rheological Properties of Polycarbonate/Multi-walled Carbon Nanotube Composites

  • Han, Mi-Sun;Lee, Yun-Kyun;Kim, Woo-Nyon;Lee, Heon-Sang;Joo, Jin-Soo;Park, Min;Lee, Hyun-Jung;Park, Chong-Rae
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.863-869
    • /
    • 2009
  • The effect of a multiwalled carbon nanotube (MWCNT) dispersion on the electrical, morphological and rheological properties of polycarbonate (PC)/MWCNT composites was investigated, with and without pretreating the MWCNTs with hydrogen peroxide oxidation and lyophilization. The resulting PC/treated MWCNT composites showed higher electrical conductivity than the PC/untreated MWCNT composites. The morphological behavior indicated the treated composites to have greater dispersion of MWCNTs in the PC matrix. In addition, the electromagnetic interference shielding efficiency (EMI SE) of the treated composites was higher than that of the untreated ones. Rheological studies of the composites showed that the complex viscosity of the treated composites was higher than the untreated ones due to increased dispersion of the MWCNTs in the PC matrix, which is consistent with the electrical conductivity, EMI SE and morphological studies of the treated composites. The latter results suggested that the increased electrical conductivity and EMI SE of the treated composites were mainly due to the increased dispersion of MWCNTs in the PC matrix.

Output filter design for conducted EMI reduction of PWM Inverter-fed Induction Motor System

  • Kim Lee-Hun;Won Chung-Yuen;Kim Young-Seok;Choi Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.761-767
    • /
    • 2001
  • In this paper, filtering techniques to reduce the adverse effects of motor leads on high-frequency PWM inverter fed AC motor drives will be examined. The filter was designed to keep the motor terminal from the cable surge impedance to reduce overvoltage reflections, ringing, and the dv/dt, di/dt. Therefore, filtering techniques are investigated to reduce the motor terminal overvoltage, ringing, and EMI noise in inverter fed ac motor drive systems. The output filter is used to limit the rate of the inverter output voltage and reduce EMI(common mode noise) to the motor. The performance of the output filter is evaluated through simulations (PSIM) and experiment on PWM inverter-fed ac motor drive(3phase, 3hp(2.2kw), input voltage 220/380V, induction motor). An experimental PWM drive system reduction of conducted EMI was implemented on an available TMS320C31 microprocessor control board. Finally, experimental results showed that the inverter output filter reduces more CM noise than the LPF(low pass filter) and reduce overvoltage and ringing at the motor terminal.

  • PDF

A study on the performance improvement of the electronic ballasts for neon (네온용 전자식 안정기의 성능개선에 관한 연구)

  • Kim, Seung-Kee;Kim, Jang-Sung;Kim, Suk-Hyun;Lee, Sang-Yun;Yun, Dal-Hwan;Kim, Ki-Hwan;Song, Hyeon-Seon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2066-2068
    • /
    • 1997
  • 네온용 전자식 안정기(EBN)의 출력선간 전자파방해(EMI)로 인한 네온관간의 신호상쇠 현상을 방지하는 회로를 설계하였다. 특히 네온관이 가까이 위치할 때 전자파유도로 인하여 네온발광이 상쇄되는 원인을 방지함으로써 EBN의 성능이 개선되는 결과를 얻었다. 또한 유도전자파를 방지함으로써 인체에 유해한 전자파를 차단하는 효과도 얻었다.

  • PDF

Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites (고분자 복합재의 물리화학적 및 전자파차폐 특성에 미치는 탄소나노튜브의 불소화 영향)

  • Lee, Si-Eun;Kim, Doyoung;Lee, Man Young;Lee, Min-Kyung;Jeong, Euigyung;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.114-121
    • /
    • 2015
  • Mutli-walled carbon nanotubes (MWCNTs) were surface-modified by a hydrofluoric acid solution to remove impurities and improve interfacial bonding and dispersion of nanotubes in an epoxy matrix. The crystallinity on the surface of treated MWCNTs was investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical properties were characterized by tensile test, and the enhancement of mechanical properties of the modified MWCNTs/epoxy composites was indicated by a 33% increase in tensile strength. The electromagnetic interference shielding effectiveness (EMI-SE) of modified MWCNTs/epoxy composites was improved with an increase in concentration of hydrofluoric solution, and EMI-SE showed the maximum increase with 25% HF. However, mechanical and EMI-SE properties didn't show further increase with over 50% HF concentration because the properties of MWCNTs were influenced by degradation of crystallinity and intrinsic properties of MWCNTs. The mechanical and electrical property enhancements of the polymer composites are attributed to the modification of MWCNTs which improve crystallinity of MWCNTs and dispersion in the epoxy resin.

Analysis for Shielding Effectiveness of Metal Shielding Layer within Near-Field of Noise Source (노이즈 소스 근거리장에 위치한 금속 차폐막의 차폐효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of the shielding layer thickness was analyzed when the metal shielding layer was placed in the near field of the magnetic probe and the noise source. Microstrip lines were used as noise source, and graphite and ferrite were selected as metal shielding materials. The magnetic probe uses the electromagnetic radiation measurement method using the magnetic probe by applying the IEC 61967-6 method. The transmission coefficient between the microstrip line and the magnetic probe was analyzed. The distance between the two was 1 mm for a single shielding layer and 5 mm for a multiple shielding layer. The thickness of the shielding layer was changed to 5 um, 10 um, 30 um, and 50 um. When the frequency was changed from 150 kHz to 1 GHz, a maximum shielding effectiveness (SE) of 44.9 dB was obtained.

Analysis of Shielding Effectiveness of Low Conductivity Shield Layers within Near-field Region (근거리장에 놓인 저전도율 차폐막의 차폐 효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of shielding layers thickness was analyzed when the low conductivity shielding layers was placed in the near field of the noise source. A spiral antenna with broadband characteristics was used as the noise source, and graphite was selected as the low conductivity shielding material. Two spiral antennas were constructed to analyze the transmission coefficient between two antennas, and the distances between the transmitting and receiving antennas were 5 cm and 10 cm. The thickness of the shielding layers was changed from 1 um to 200 um. The frequency was changed from 100 MHz to 6 GHz to obtain a maximum SE(Shielding Effectiveness) of 70 dB. In this simulation, electronic shielding was used due to the nature of graphite, which is a shielding film material. Based on these results, we will study how to improve the shielding performance by implementing magnetic shielding in the future.